دورية أكاديمية

Stability and gene strand bias of lambda prophages and chromosome organization in Escherichia coli .

التفاصيل البيبلوغرافية
العنوان: Stability and gene strand bias of lambda prophages and chromosome organization in Escherichia coli .
المؤلفون: Li X; Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland, USA., Gallardo O; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel., August E; Department of Engineering, Reykjavik University, Reykjavík, Iceland., Dassa B; Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel., Court DL; Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland, USA., Stavans J; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel., Arbel-Goren R; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
المصدر: MBio [mBio] 2024 Jul 17; Vol. 15 (7), pp. e0207823. Date of Electronic Publication: 2024 Jun 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 101519231 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2150-7511 (Electronic) NLM ISO Abbreviation: mBio Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Society for Microbiology
مواضيع طبية MeSH: Escherichia coli*/genetics , Escherichia coli*/virology , Bacteriophage lambda*/genetics , Bacteriophage lambda*/physiology , Chromosomes, Bacterial*/genetics , Lysogeny*/genetics, Virus Integration ; Gene Transfer, Horizontal ; Genomic Instability ; Repressor Proteins/genetics ; Repressor Proteins/metabolism ; Prophages/genetics ; Prophages/physiology ; In Situ Hybridization, Fluorescence ; Viral Regulatory and Accessory Proteins
مستخلص: Temperate phage-mediated horizontal gene transfer is a potent driver of genetic diversity in the evolution of bacteria. Most lambdoid prophages in Escherichia coli are integrated into the chromosome with the same orientation with respect to the direction of chromosomal replication, and their location on the chromosome is far from homogeneous. To better understand these features, we studied the interplay between lysogenic and lytic states of phage lambda in both native and inverted integration orientations at the wild-type integration site as well as at other sites on the bacterial chromosome. Measurements of free phage released by spontaneous induction showed that the stability of lysogenic states is affected by location and orientation along the chromosome, with stronger effects near the origin of replication. Competition experiments and range expansions between lysogenic strains with opposite orientations and insertion loci indicated that there are no major differences in growth. Moreover, measurements of the level of transcriptional bursts of the cI gene coding for the lambda phage repressor using single-molecule fluorescence in situ hybridization resulted in similar levels of transcription for both orientations and prophage location. We postulate that the preference for a given orientation and location is a result of a balance between the maintenance of lysogeny and the ability to lyse.IMPORTANCEThe integration of genetic material of temperate bacterial viruses (phages) into the chromosomes of bacteria is a potent evolutionary force, allowing bacteria to acquire in one stroke new traits and restructure the information in their chromosomes. Puzzlingly, this genetic material is preferentially integrated in a particular orientation and at non-random sites on the bacterial chromosome. The work described here reveals that the interplay between the maintenance of the stability of the integrated phage, its ability to excise, and its localization along the chromosome plays a key role in setting chromosomal organization in Escherichia coli .
Competing Interests: The authors declare no conflict of interest.
References: Cell Host Microbe. 2024 Mar 13;32(3):322-334.e9. (PMID: 38423015)
Science. 2016 Mar 11;351(6278):1218-22. (PMID: 26965629)
Rev Mod Phys. 2010 Jun 1;82(2):1691-1718. (PMID: 21072144)
Genes Dev. 2001 Nov 15;15(22):3013-22. (PMID: 11711436)
Nat Methods. 2008 Oct;5(10):877-9. (PMID: 18806792)
ISME J. 2016 Nov;10(11):2744-2754. (PMID: 27015004)
Theor Popul Biol. 2020 Jun;133:168-179. (PMID: 31758948)
Genome Med. 2014 Nov 28;6(11):112. (PMID: 25530806)
Genetics. 2009 Aug;182(4):1365-75. (PMID: 19474197)
EMBO J. 1999 Aug 2;18(15):4299-307. (PMID: 10428968)
Nucleic Acids Res. 2016 Aug 19;44(14):6707-20. (PMID: 27085802)
Genes Dev. 2004 Feb 1;18(3):344-54. (PMID: 14871931)
Theor Popul Biol. 2002 Jun;61(4):503-7. (PMID: 12167370)
Nature. 2007 Apr 5;446(7136):668-71. (PMID: 17410176)
Cold Spring Harb Perspect Biol. 2016 Jan 04;8(1):a018168. (PMID: 26729648)
Science. 2010 Jul 30;329(5991):533-8. (PMID: 20671182)
Mol Syst Biol. 2010 Nov 30;6:440. (PMID: 21119634)
PLoS Genet. 2010 Jan 15;6(1):e1000810. (PMID: 20090829)
Front Genet. 2019 Feb 12;10:65. (PMID: 30809245)
Nucleic Acids Res. 1994 Dec 25;22(25):5765-6. (PMID: 7838735)
Annu Rev Microbiol. 2021 Oct 8;75:563-581. (PMID: 34343015)
Res Microbiol. 2003 May;154(4):277-82. (PMID: 12798232)
Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents. (PMID: 15353570)
Mol Microbiol. 2011 May;80(3):612-27. (PMID: 21414037)
Nat Commun. 2017 Oct 10;8(1):841. (PMID: 29018197)
J Bacteriol. 2010 Nov;192(22):6064-76. (PMID: 20870769)
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10655-9. (PMID: 19541626)
Theor Popul Biol. 2008 Feb;73(1):158-70. (PMID: 17963807)
Nat Genet. 2011 Jun;43(6):554-60. (PMID: 21532574)
Nucleic Acids Res. 2014 Oct;42(18):11383-92. (PMID: 25209233)
Mol Microbiol. 2004 Jul;53(1):9-18. (PMID: 15225299)
Nucleic Acids Res. 2013 Dec;41(22):e204. (PMID: 24203710)
Annu Rev Genet. 2005;39:409-29. (PMID: 16285866)
J Mol Biol. 1968 Feb 14;31(3):507-18. (PMID: 4866336)
Front Med (Lausanne). 2018 May 23;5:146. (PMID: 29876350)
F1000Res. 2016 Jul 25;5:. (PMID: 27508073)
J Vis Exp. 2017 Dec 21;(130):. (PMID: 29286479)
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7308-12. (PMID: 24799672)
Nucleic Acids Res. 2017 Sep 6;45(15):8943-8956. (PMID: 28911112)
EMBO J. 2004 Oct 27;23(21):4330-41. (PMID: 15470498)
Cell. 2016 Dec 1;167(6):1455-1467. (PMID: 27912056)
Nat Genet. 2003 Aug;34(4):377-8. (PMID: 12847524)
Nat Commun. 2010;1:147. (PMID: 21266997)
Nat Rev Genet. 2016 Oct 14;17(11):704-714. (PMID: 27739533)
Nat Struct Mol Biol. 2013 Apr;20(4):412-8. (PMID: 23552296)
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19926-30. (PMID: 18056799)
Mol Biol Evol. 2013 Apr;30(4):737-51. (PMID: 23243039)
معلومات مُعتمدة: NIH Intramural Research Program; Kushner Fellowship; Siegfried and Irma Ullman Professorial Chair
فهرسة مساهمة: Keywords: bacteria; chromosome organization; evolution; gene strand bias; horizontal gene transfer; lysogen stability; temperate bacteriophage
المشرفين على المادة: 0 (phage repressor proteins)
0 (Repressor Proteins)
0 (Viral Regulatory and Accessory Proteins)
تواريخ الأحداث: Date Created: 20240618 Date Completed: 20240717 Latest Revision: 20240719
رمز التحديث: 20240719
مُعرف محوري في PubMed: PMC11253608
DOI: 10.1128/mbio.02078-23
PMID: 38888367
قاعدة البيانات: MEDLINE
الوصف
تدمد:2150-7511
DOI:10.1128/mbio.02078-23