دورية أكاديمية

Optimized production and characterization of endo-β-mannanase by Aspergillus niger for generation of prebiotic mannooligosaccharides from guar gum.

التفاصيل البيبلوغرافية
العنوان: Optimized production and characterization of endo-β-mannanase by Aspergillus niger for generation of prebiotic mannooligosaccharides from guar gum.
المؤلفون: Nath S; Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India., Kango N; Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India. nkango@gmail.com.
المصدر: Scientific reports [Sci Rep] 2024 Jun 18; Vol. 14 (1), pp. 14015. Date of Electronic Publication: 2024 Jun 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Mannans*/chemistry , Mannans*/metabolism , Plant Gums*/chemistry , Galactans*/chemistry , Aspergillus niger*/enzymology , Prebiotics* , Oligosaccharides*/chemistry , beta-Mannosidase*/metabolism , beta-Mannosidase*/chemistry, Hydrolysis ; Hydrogen-Ion Concentration ; Fatty Acids, Volatile/metabolism ; X-Ray Diffraction ; Temperature ; Lactobacillus/metabolism ; Probiotics
مستخلص: Optimized production of Aspergillus niger ATCC 26011 endo-β-mannanase (ManAn) on copra meal resulted in 2.46-fold increase (10,028 U/gds). Purified ManAn (47 kDa) showed high affinity towards guar gum (GG) as compared to konjac gum and locust bean gum with K m 2.67, 3.25 and 4.07 mg/mL, respectively. ManAn efficiently hydrolyzed GG and liberated mannooligosaccharides (MOS). Changes occurring in the rheological and compositional aspects of GG studied using Differential scanning calorimetry (DSC), Thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) revealed increased thermal stability and crystallinity of the partially hydrolyzed guar gum (PHGG). Parametric optimization of the time and temperature dependent hydrolysis of GG (1% w/v) with 100 U/mL of ManAn at 60 °C and pH: 5.0 resulted in 12.126 mg/mL of mannotetraose (M4) in 5 min. Enhanced growth of probiotics Lactobacilli and production of short chain fatty acids (SCFA) that inhibited enteropathogens, confirmed the prebiotic potential of PHGG and M4.
(© 2024. The Author(s).)
References: Mudgil, D., Barak, S. & Khatkar, B. S. Guar gum: Processing, properties and food applications—A review. J. Food Sci. Technol. 51, 409–418 (2014). (PMID: 2458751510.1007/s13197-011-0522-x)
Mandal, S., Hwang, S. & Shi, S. Q. Guar gum, a low-cost sustainable biopolymer, for wastewater treatment: A review. Int. J. Biol. Macromol. 226, 368–382 (2023). (PMID: 3651317710.1016/j.ijbiomac.2022.12.039)
Kango, N., Jana, U. K., Choukade, R. & Nath, S. Advances in prebiotic mannooligosaccharides. Curr. Opin. Food Sci. 47, 100883 (2022). (PMID: 10.1016/j.cofs.2022.100883)
Greenhalgh, S., Macelline, S. P., Chrystal, P. V., Liu, S. Y. & Selle, P. H. Elevated branched-chain amino acid inclusions generate distinctly divergent growth performance responses in broiler chickens offered wheat- and/or sorghum-based, reduced-crude protein diets. Anim. Feed Sci. Technol. 292, 115446 (2022). (PMID: 10.1016/j.anifeedsci.2022.115446)
Tahmouzi, S. et al. Application of guar (Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action. Food Sci. Nutr. 11, 4869–4897 (2023). (PMID: 377012001049463110.1002/fsn3.3383)
Dawood, A. & Ma, K. Applications of Microbial β-Mannanases. Frontiers in Bioengineering and Biotechnology 8, 598630 (2020). (PMID: 33384989777014810.3389/fbioe.2020.598630)
Soni, H., Rawat, H. K., Ahirwar, S. & Kango, N. Screening, statistical optimized production, and application of β-mannanase from some newly isolated fungi. Eng. Life Sci. 17, 392–401 (2017). (PMID: 3262478410.1002/elsc.201600136)
Nath, S. & Kango, N. Recent developments in industrial mycozymes: A current appraisal. Mycology 13, 81–105 (2022). (PMID: 3571132610.1080/21501203.2021.1974111)
Soni, H., Rawat, H. K., Pletschke, B. I. & Kango, N. Purification and characterization of β-mannanase from Aspergillus terreus and its applicability in depolymerization of mannans and saccharification of lignocellulosic biomass. 3 Biotech. 6, 136 (2016). (PMID: 28330208491296210.1007/s13205-016-0454-2)
Prajapati, B. P., Kumar Suryawanshi, R., Agrawal, S., Ghosh, M. & Kango, N. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour. Technol. 250, 733–740 (2018). (PMID: 2922309410.1016/j.biortech.2017.11.099)
Jana, U. K., Suryawanshi, R. K., Prajapati, B. P., Soni, H. & Kango, N. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. Bioresour. Technol. 268, 308–314 (2018). (PMID: 3009248410.1016/j.biortech.2018.07.143)
Suryawanshi, R. K., Jana, U. K., Prajapati, B. P. & Kango, N. Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem. 289, 95–102 (2019). (PMID: 3095567810.1016/j.foodchem.2019.03.035)
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) et al. Safety evaluation of the food enzyme mannan endo-1,4-β-mannosidase from the genetically modified Aspergillus niger strain NZYM-NM. EFS2 J. https://doi.org/10.2903/j.efsa.2022.7264 (2022). (PMID: 10.2903/j.efsa.2022.7264)
Maijala, P., Kango, N., Szijarto, N. & Viikari, L. Characterization of hemicellulases from thermophilic fungi. Antonie van Leeuwenhoek 101, 905–917 (2012). (PMID: 2237115010.1007/s10482-012-9706-2)
Kango, N., Agrawal, S. C. & Jain, P. C. Production of xylanase by Emericella nidulans NK-62 on low cost lignocellulosic substrates. World J. Microbiol. Biotechnol. 19, 691–694 (2003). (PMID: 10.1023/A:1025123323834)
Naganagouda, K., Salimath, P. V. & Mulimani, V. H. Purification and characterization of endo-beta-1,4 mannanase from Aspergillus niger gr for application in food processing industry. J. Microbiol. Biotechnol. 19, 1184–1190 (2009). (PMID: 19884778)
Kumar Suryawanshi, R. & Kango, N. Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential. Food Chem. 334, 127428 (2021). (PMID: 3268817310.1016/j.foodchem.2020.127428)
Jana, U. K. & Kango, N. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int. J. Biol. Macromol. 149, 931–940 (2020). (PMID: 3201448210.1016/j.ijbiomac.2020.01.304)
Wan, X.-F. et al. Determination of average molecular weight of guar gum by a simple twice headspace extraction gas chromatographic technique. Polym. Test. 70, 170–173 (2018). (PMID: 10.1016/j.polymertesting.2018.06.027)
Mudgil, D., Barak, S. & Khatkar, B. S. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int. J. Biol. Macromol. 50, 1035–1039 (2012). (PMID: 2240987110.1016/j.ijbiomac.2012.02.031)
Sornlake, W., Matetaviparee, P., Rattanaphan, N., Tanapongpipat, S. & Eurwilaichitr, L. β -Mannanase production by Aspergillus niger BCC 4525 and its efficacy on broiler performance. J. Sci. Food Agric. 93, 3345–3351 (2013). (PMID: 2371648310.1002/jsfa.6183)
Alsarrani, A. Q. Production of Mannan-degrading enzyme by Aspergillus niger. J. Taibah Univ. Sci. 5, 1–6 (2011). (PMID: 10.1016/S1658-3655(12)60032-6)
Ahirwar, S. et al. Production optimization and functional characterization of thermostable β-mannanase from Malbranchea cinnamomea NFCCI 3724 and its applicability in mannotetraose (M4) generation. J. Taiwan Inst. Chem. Eng. 63, 344–353 (2016). (PMID: 10.1016/j.jtice.2016.03.033)
Asfamawi, K. K., Noraini, S. & Darah, I. Isolation, screening and identification of mannanase producer microorganisms. J. Trop. Agric. Food. Sci. 41(1), 169–177 (2013).
Rashid, S. A., Ibrahim, D. & Oma, I. C. Mannanase production by Aspergillus niger USM F4 via solid substrate fermentation in a shallow tray using palm kernel cake as a substrate. Malays. J. Microbiol. 8(4), 273–279 (2012).
Olaniyi, O. Production and partial purification of beta-mannanase from Aspergillus niger associated with Ilaje Lake, Ondo State, Nigeria. J. Bacteriol. Mycol. 5, 281–285 (2017).
Pasanen, A.-L., Kalliokoski, P., Pasanen, P., Jantunen, M. J. & Nevalainen, A. Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environ. Int. 17(4), 225–228 (1991). (PMID: 10.1016/0160-4120(91)90006-C)
Mohamad, S. N., Ramanan, R. N., Mohamad, R. & Ariff, A. B. Improved mannan-degrading enzymes’ production by Aspergillus niger through medium optimization. New Biotechnol. 28, 146–152 (2011). (PMID: 10.1016/j.nbt.2010.10.008)
Yin, J.-S., Liang, Q.-L., Li, D.-M. & Sun, Z.-T. Optimization of production conditions for β-mannanase using apple pomace as raw material in solid-state fermentation. Ann. Microbiol. 63, 101–108 (2013). (PMID: 10.1007/s13213-012-0449-0)
Mulimani, V. H. & Naganagouda, K. Research in food science education: Simple laboratory exercise for induction of β-mannanase from Aspergillus niger. J. Food Sci. Educ. 9(3), 76–79 (2010). (PMID: 10.1111/j.1541-4329.2009.00091.x)
Regalado, C. et al. Production, partial purification and properties of β-mannanases obtained by solid substrate fermentation of spent soluble coffee wastes and copra paste using Aspergillus oryzae and Aspergillus niger. J. Sci. Food Agric. 80, 1343–1350 (2000). (PMID: 10.1002/1097-0010(200007)80:9<1343::AID-JSFA651>3.0.CO;2-#)
Lin, T.-C. & Chen, C. Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media. Process Biochem. 39, 1103–1109 (2004). (PMID: 10.1016/S0032-9592(03)00218-8)
Kote, N. V., Patil, A. G. G. & Mulimani, V. H. Optimization of the production of thermostable endo-β-1,4 mannanases from a newly isolated Aspergillus niger gr and Aspergillus flavus gr. Appl. Biochem. Biotechnol. 152, 213–223 (2009). (PMID: 1859705010.1007/s12010-008-8250-z)
Abdeshahian, P., Samat, N., Hamid, A. A. & Yusoff, W. M. W. Utilization of palm kernel cake for production of β-mannanase by Aspergillus niger FTCC 5003 in solid substrate fermentation using an aerated column bioreactor. J. Ind. Microbiol. Biotechnol. 37, 103–109 (2010). (PMID: 1993708510.1007/s10295-009-0658-0)
Magengelele, M. et al. Production and in vitro evaluation of prebiotic manno-oligosaccharides prepared with a recombinant Aspergillus niger endo-mannanase, Man26A. Enzyme Microb. Technol. 150, 109893 (2021). (PMID: 3448904610.1016/j.enzmictec.2021.109893)
Wu, M., Tang, C., Li, J., Zhang, H. & Guo, J. Bimutation breeding of Aspergillus niger strain for enhancing β-mannanase production by solid-state fermentation. Carbohydr. Res. 346, 2149–2155 (2011). (PMID: 2186799310.1016/j.carres.2011.06.035)
Huang, J.-W. et al. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochim. Biophys. Acta Proteins Proteomics 1844, 663–669 (2014). (PMID: 10.1016/j.bbapap.2014.01.011)
Bien-Cuong, D. et al. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01. Microb. Cell Fact. 8, 59 (2009). (PMID: 278038810.1186/1475-2859-8-59)
Li, J.-F., Zhao, S.-G., Tang, C.-D., Wang, J.-Q. & Wu, M.-C. Cloning and functional expression of an acidophilic β-mannanase gene ( Anman5A ) from Aspergillus niger LW-1 in Pichia pastoris. J. Agric. Food Chem. 60, 765–773 (2012). (PMID: 2222550210.1021/jf2041565)
Zhao, W., Zheng, J. & Zhou, H. A thermotolerant and cold-active mannan endo-1,4-β-mannosidase from Aspergillus niger CBS 513.88: Constitutive overexpression and high-density fermentation in Pichia pastoris. Bioresour. Technol. 102, 7538–7547 (2011). (PMID: 2163224010.1016/j.biortech.2011.04.070)
Yu, S. et al. High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris. Biotechnol. Lett. 37, 1853–1859 (2015). (PMID: 2596703410.1007/s10529-015-1848-7)
Harnpicharnchai, P. et al. Production of high activity Aspergillus niger BCC4525 β-mannanase in Pichia pastoris and its application for mannooligosaccharides production from biomass hydrolysis. Biosci. Biotechnol. Biochem. 80, 2298–2305 (2016). (PMID: 2764876210.1080/09168451.2016.1230003)
Wang, N.-N. et al. High-level expression of a glycoside hydrolase family 26 β-mannanase from Aspergillus niger in Pichia pastoris for production of partially hydrolysed fenugreek gum. Process Biochem. 100, 90–97 (2021). (PMID: 10.1016/j.procbio.2020.09.034)
Mafa, M. S. & Malgas, S. Towards an understanding of the enzymatic degradation of complex plant mannan structures. World J. Microbiol. Biotechnol. 39(11), 302 (2023). (PMID: 376886101049268510.1007/s11274-023-03753-7)
Chen, J. et al. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology. Carbohydr. Polym. 93(1), 81–88 (2013). (PMID: 2346590410.1016/j.carbpol.2012.05.037)
Yilmazer, C. et al. Optimization of mannooligosaccharides production from different hydrocolloids via response surface methodology using a recombinant Aspergillus sojae β-mannanase produced in the microparticle-enhanced large-scale stirred tank bioreactor. J. Food Process Preserv. 45, e14916 (2021). (PMID: 10.1111/jfpp.14916)
La Rosa, S. L. et al. Wood-derived dietary fibers promote beneficial human gut microbiota. mSphere 4, e00554-18 (2019). (PMID: 30674645634460110.1128/mSphere.00554-18)
Nopvichai, C. et al. Production and purification of mannan oligosaccharide with epithelial tight junction enhancing activity. PeerJ 7, e7206 (2019). (PMID: 31304065661144910.7717/peerj.7206)
Ghosh, A., Verma, A. K., Tingirikari, J. R., Shukla, R. & Goyal, A. Recovery and purification of oligosaccharides from copra meal by recombinant endo-β-mannanase and deciphering molecular mechanism involved and its role as potent therapeutic agent. Mol. Biotechnol. 57(2), 111–127 (2015). (PMID: 2526089210.1007/s12033-014-9807-4)
Xin, D., Yin, H. & Ran, G. Efficient production of high-purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis. Bioresour. Technol. 401, 130719 (2024). (PMID: 3864266210.1016/j.biortech.2024.130719)
Hussain, M. et al. Hydrolysis, microstructural profiling and utilization of Cyamopsis tetragonoloba in yoghurt. Fermentation 9, 45 (2023). (PMID: 10.3390/fermentation9010045)
Motta, M. V. L. et al. Thermal and spectroscopic analyses of guar gum degradation submitted to turbulent flow. Int. J. Biol. Macromol. 131, 43–49 (2019). (PMID: 3084946910.1016/j.ijbiomac.2019.03.037)
Hussain, M., Zahoor, T., Akhtar, S., Ismail, A. & Hameed, A. Thermal stability and haemolytic effects of depolymerized guar gum derivatives. J. Food Sci. Technol. 55, 1047–1055 (2018). (PMID: 29487447582166210.1007/s13197-017-3018-5)
Mary, P. R., Prashanth, K. V. H., Vasu, P. & Kapoor, M. Structural diversity and prebiotic potential of short chain β-manno-oligosaccharides generated from guar gum by endo-β-mannanase (ManB-1601). Carbohydr. Res. 486, 107822 (2019). (PMID: 3160061110.1016/j.carres.2019.107822)
Wongsiridetchai, C., Jonjaroen, V., Sawangwan, T., Charoenrat, T. & Chantorn, S. Evaluation of prebiotic mannooligosaccharides obtained from spent coffee grounds for nutraceutical application. LWT 148, 111717 (2021). (PMID: 10.1016/j.lwt.2021.111717)
Sasaki, D., Sasaki, K., Abe, A., Ozeki, M. & Kondo, A. Effects of partially hydrolyzed guar gums of different molecular weights on a human intestinal in vitro fermentation model. J. Biosci. Bioeng. 136(1), 67–73 (2023). (PMID: 3710585710.1016/j.jbiosc.2023.04.002)
Choi, A.-R., Patra, J. K., Kim, W. J. & Kang, S.-S. Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Front. Microbiol. 9, 1963 (2018). (PMID: 30197633611738110.3389/fmicb.2018.01963)
Bai, J. et al. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 315, 123881 (2020). (PMID: 3273115710.1016/j.biortech.2020.123881)
Martinez, B., Schwerdtfeger, L. A., Richardson, A., Tobet, S. A. & Henry, C. S. 1 H-NMR profiling of short-chain fatty acid content from a physiologically accurate gut-on-a-chip device. Anal. Chem. 94(28), 9987–9992 (2022). (PMID: 3579742210.1021/acs.analchem.1c05146)
Wang, Y. et al. A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. IJMS 17, 1870 (2016). (PMID: 27834859513387010.3390/ijms17111870)
Müller, B. et al. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom. Med. 83(7), 693–699 (2021). (PMID: 34267089842885710.1097/PSY.0000000000000965)
Tan, J. et al. The role of short-chain fatty acids in health and disease. In Advances in Immunology vol. 121, 91–119 (Elsevier, 2014).
Zhang, J. et al. Evaluation of in vitro prebiotic effects of galactomannan oligosaccharides derived from guar gum. Int. J. Food Sci. Technol. 59, 1885–1897 (2024). (PMID: 10.1111/ijfs.16940)
فهرسة مساهمة: Keywords: A. niger; Guar gum; Partially hydrolyzed guar gum; Prebiotics; Probiotics; β-mannanase
المشرفين على المادة: 0 (Mannans)
0 (Plant Gums)
0 (Galactans)
E89I1637KE (guar gum)
0 (Prebiotics)
0 (Oligosaccharides)
EC 3.2.1.25 (beta-Mannosidase)
3634-02-4 (mannotetraose)
0 (Fatty Acids, Volatile)
تواريخ الأحداث: Date Created: 20240618 Date Completed: 20240618 Latest Revision: 20240624
رمز التحديث: 20240625
DOI: 10.1038/s41598-024-63803-4
PMID: 38890382
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-63803-4