دورية أكاديمية

Vascular cambium stem cells: past, present and future.

التفاصيل البيبلوغرافية
العنوان: Vascular cambium stem cells: past, present and future.
المؤلفون: Wybouw B; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland., Zhang X; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland., Mähönen AP; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.
المصدر: The New phytologist [New Phytol] 2024 Aug; Vol. 243 (3), pp. 851-865. Date of Electronic Publication: 2024 Jun 18.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Cambium*/cytology , Cambium*/growth & development , Cambium*/physiology , Stem Cells*/cytology , Xylem*/cytology, Phloem/cytology ; Plant Growth Regulators/metabolism ; Signal Transduction ; Plant Vascular Bundle/growth & development ; Plant Vascular Bundle/cytology ; Meristem/cytology ; Meristem/growth & development
مستخلص: Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.
(© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
References: Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM et al. 2011. Strigolactone signaling is required for auxin‐dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences, USA 108: 20242–20247.
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109–120.
Alonso‐Serra J, Shi X, Peaucelle A, Rastas P, Bourdon M, Immanen J, Takahashi J, Koivula H, Eswaran G, Muranen S et al. 2020. ELIMAKI locus is required for vertical proprioceptive response in birch trees. Current Biology 30: 589–599.
Arents HE, Eswaran G, Glanc M, Mähönen AP, De Rybel B. 2022. Means to quantify vascular cell file numbers in different tissues. Methods in Molecular Biology 2382: 155–179.
Bagdassarian KS, Etchells JP, Savage NS. 2023. A mathematical model integrates diverging PXY and MP interactions in cambium development. In Silico Plants 5: 1–15.
Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G. 1995. The expression of the Athb‐8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121: 4171–4182.
Ben‐Targem M, Ripper D, Bayer M, Ragni L. 2021. Auxin and gibberellin signaling cross‐talk promotes hypocotyl xylem expansion and cambium homeostasis. Journal of Experimental Botany 72: 3647–3660.
van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. 1997. Short‐range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287–289.
Bhalerao RP, Fischer U. 2017. Environmental and hormonal control of cambial stem cell dynamics. Journal of Experimental Botany 68: 79–87.
Bossinger G, Spokevicius AV. 2018. Sector analysis reveals patterns of cambium differentiation in poplar stems. Journal of Experimental Botany 69: 4339–4348.
Brackmann K, Qi J, Gebert M, Jouannet V, Schlamp T, Grunwald K, Wallner ES, Novikova DD, Levitsky VG, Agusti J et al. 2018. Spatial specificity of auxin responses coordinates wood formation. Nature Communications 9: 875.
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617–619.
Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno‐Risueno MA, Vaten A, Thitamadee S et al. 2010. Cell signalling by microRNA165/6 directs gene dose‐dependent root cell fate. Nature 465: 316–321.
Clark SE, Running MP, Meyerowitz EM. 1995. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121: 2057–2067.
Clark SE, Williams RW, Meyerowitz EM. 1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89: 575–585.
Dai X, Zhai R, Lin J, Wang Z, Meng D, Li M, Mao Y, Gao B, Ma H, Zhang B et al. 2023. Cell‐type‐specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa. Nature Plants 9: 96–111.
Dang TVT, Lee S, Cho H, Choi K, Hwang I. 2023. The LBD11‐ROS feedback regulatory loop modulates vascular cambium proliferation and secondary growth in Arabidopsis. Molecular Plant 16: 1131–1145.
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novak O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J et al. 2014. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345: 1255215.
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. 2019. CRISPR‐TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31: 2868–2887.
Desvoyes B, Arana‐Echarri A, Barea MD, Gutierrez C. 2020. A comprehensive fluorescent sensor for spatiotemporal cell cycle analysis in Arabidopsis. Nature Plants 6: 1330–1334.
Ding Z, Friml J. 2010. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proceedings of the National Academy of Sciences, USA 107: 12046–12051.
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. 1993. Cellular organisation of the Arabidopsis thaliana root. Development 119: 71–84.
Donner TJ, Sherr I, Scarpella E. 2009. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136: 3235–3246.
Donoghue M. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 77–93.
Eriksson ME, Israelsson M, Olsson O, Moritz T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18: 784–788.
Eswaran G, Rutten JP, Han J, Iida H, Ortiz JL, Mäkilä R, Wybouw B, Vainio L, Porcher A, Gavarron ML et al. 2023. Identification of cambium stem cell factors and their positioning mechanism. bioRxiv. doi: 10.1101/2023.07.20.549889.
Etchells JP, Provost CM, Mishra L, Turner SR. 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140: 2224–2234.
Etchells JP, Provost CM, Turner SR. 2012. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLoS Genetics 8: e1002997.
Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM. 2016. A brief history of the TDIF‐PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytologist 209: 474–484.
Etchells JP, Turner SR. 2010. The PXY‐CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137: 767–774.
Evert R. 2006. Esau's plant anatomy, meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Hoboken, NJ, USA: John Wiley & Sons.
Fisher K, Turner S. 2007. PXY, a receptor‐like kinase essential for maintaining polarity during plant vascular‐tissue development. Current Biology 17: 1061–1066.
Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911–1914.
Furuya T, Saito M, Uchimura H, Satake A, Nosaki S, Miyakawa T, Shimadzu S, Yamori W, Tanokura M, Fukuda H et al. 2021. Gene co‐expression network analysis identifies BEH3 as a stabilizer of secondary vascular development in Arabidopsis. Plant Cell 33: 2618–2636.
Guo Y, Qin G, Gu H, Qu LJ. 2009. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell 21: 3518–3534.
Han S, Cho H, Noh J, Qi J, Jung HJ, Nam H, Lee S, Hwang D, Greb T, Hwang I. 2018. BIL1‐mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nature Plants 4: 605–614.
Hartmann FP, Rathgeber CBK, Badel E, Fournier M, Moulia B. 2021. Modelling the spatial crosstalk between two biochemical signals explains wood formation dynamics and tree‐ring structure. Journal of Experimental Botany 72: 1727–1737.
Hirakawa Y, Kondo Y, Fukuda H. 2010. Regulation of vascular development by CLE peptide‐receptor systems. Journal of Integrative Plant Biology 52: 8–16.
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi‐Ito K, Matsubayashi Y, Fukuda H. 2008. Non‐cell‐autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proceedings of the National Academy of Sciences, USA 105: 15208–15213.
Hu J, Su H, Cao H, Wei H, Fu X, Jiang X, Song Q, He X, Xu C, Luo K. 2022. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell 34: 2688–2707.
Ikematsu S, Tasaka M, Torii KU, Uchida N. 2017. ERECTA‐family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytologist 213: 1697–1709.
Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J, Koskinen P, Zhang J, Elo A, Mähönen AP, Street N et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26: 1990–1997.
Irish VF, Sussex IM. 1992. A fate map of the Arabidopsis embryonic shoot apical meristem. Development 115: 745–753.
Israelsson M, Sundberg B, Moritz T. 2005. Tissue‐specific localization of gibberellins and expression of gibberellin‐biosynthetic and signaling genes in wood‐forming tissues in aspen. The Plant Journal 44: 494–504.
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H. 2006. Dodeca‐CLE peptides as suppressors of plant stem cell differentiation. Science 313: 842–845.
Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ. 2010. WOX4 promotes procambial development. Plant Physiology 152: 1346–1356.
Kidner C, Sundaresan V, Roberts K, Dolan L. 2000. Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211: 191–199.
Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y. 2006. A plant peptide encoded by CLV3 identified by in situ MALDI‐TOF MS analysis. Science 313: 845–848.
Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H. 2014. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF‐TDR signalling. Nature Communications 5: 3504.
Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL‐RELATED HOMEOBOX4 (WOX4)‐like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215: 642–657.
Lebovka I, Hay Mele B, Liu X, Zakieva A, Schlamp T, Gursanscky NR, Merks RMH, Grosseholz R, Greb T. 2023. Computational modeling of cambium activity provides a regulatory framework for simulating radial plant growth. eLife 12: e66627.
Longman KA, Wareing PF. 1959. Early induction of flowering in birch seedlings. Nature 184: 2037–2038.
Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B. 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proceedings of the National Academy of Sciences, USA 106: 5984–5989.
Ma Y, Miotk A, Sutikovic Z, Ermakova O, Wenzl C, Medzihradszky A, Gaillochet C, Forner J, Utan G, Brackmann K et al. 2019. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nature Communications 10: 5093.
Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y. 2006. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311: 94–98.
Mähönen AP, Ten Tusscher K, Siligato R, Smetana O, Diaz‐Trivino S, Salojarvi J, Wachsman G, Prasad K, Heidstra R, Scheres B. 2014. PLETHORA gradient formation mechanism separates auxin responses. Nature 515: 125–129.
Mäkilä R, Wybouw B, Smetana O, Vainio L, Sole‐Gil A, Lyu M, Ye L, Wang X, Siligato R, Jenness MK et al. 2023. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Nature Plants 9: 631–644.
Mallory AC, Reinhart BJ, Jones‐Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP. 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO Journal 23: 3356–3364.
Matsumoto‐Kitano M, Kusumoto T, Tarkowski P, Kinoshita‐Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T. 2008. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences, USA 105: 20027–20031.
Mauriat M, Moritz T. 2009. Analyses of GA20ox‐ and GID1‐over‐expressing aspen suggest that gibberellins play two distinct roles in wood formation. The Plant Journal 58: 989–1003.
Milhinhos A, Vera‐Sirera F, Blanco‐Tourinan N, Mari‐Carmona C, Carrio‐Segui A, Forment J, Champion C, Thamm A, Urbez C, Prescott H et al. 2019. SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proceedings of the National Academy of Sciences, USA 116: 18710–18716.
Minne M, Ke Y, Saura‐Sanchez M, De Rybel B. 2022. Advancing root developmental research through single‐cell technologies. Current Opinion in Plant Biology 65: 102113.
Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO, Mellor N, Help‐Rinta‐Rahko H, Otero S, Smet W et al. 2019. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565: 490–494.
Mor E, Pernisova M, Minne M, Cerutti G, Ripper D, Nolf J, Andres J, Ragni L, Zurbriggen MD, De Rybel B et al. 2022. bHLH heterodimer complex variations regulate cell proliferation activity in the meristems of Arabidopsis thaliana. iScience 25: 105364.
Mudunkothge JS, Krizek BA. 2012. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function. The Plant Journal 71: 108–121.
Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix M, Ljung K et al. 2008. Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences, USA 105: 20032–20037.
Nilsson J, Karlberg A, Antti H, Lopez‐Vernaza M, Mellerowicz E, Perrot‐Rechenmann C, Sandberg G, Bhalerao RP. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20: 843–855.
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. 2008. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319: 294.
Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T. 1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200: 229–237.
Ragni L, Nieminen K, Pacheco‐Villalobos D, Sibout R, Schwechheimer C, Hardtke CS. 2011. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23: 1322–1336.
Rahimi A, Karami O, Lestari AD, de Werk T, Amakorova P, Shi D, Novak O, Greb T, Offringa R. 2022. Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15. Current Biology 32: 1764–1775.
Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T et al. 2015. AINTEGUMENTA and the D‐type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biology Open 4: 1229–1236.
Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM. 2004. Real‐time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131: 4225–4237.
Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. 2003. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130: 4073–4083.
Robischon M, Du J, Miura E, Groover A. 2011. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiology 155: 1214–1225.
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P et al. 1999. An auxin‐dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472.
Sabatini S, Heidstra R, Wildwater M, Scheres B. 2003. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes & Development 17: 354–358.
Scheres B. 2005. Stem cells: a plant biology perspective. Cell 122: 499–504.
Scheres B. 2007. Stem‐cell niches: nursery rhymes across kingdoms. Nature Reviews Molecular Cell Biology 8: 345–354.
Schlegel J, Denay G, Wink R, Pinto KG, Stahl Y, Schmid J, Blumke P, Simon RG. 2021. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. eLife 10: e70934.
Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T. 2010. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. The Plant Journal 63: 811–822.
Serra O, Mähönen AP, Hetherington AJ, Ragni L. 2022. The making of plant armor: the periderm. Annual Review of Plant Biology 73: 405–432.
Shi D, Jouannet V, Agusti J, Kaul V, Levitsky V, Sanchez P, Mironova VV, Greb T. 2021. Tissue‐specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. Plant Cell 33: 200–223.
Shi D, Lebovka I, Lopez‐Salmeron V, Sanchez P, Greb T. 2019. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 146: dev171355.
Siligato R, Wang X, Yadav SR, Lehesranta S, Ma G, Ursache R, Sevilem I, Zhang J, Gorte M, Prasad K et al. 2016. MultiSite gateway‐compatible cell type‐specific gene‐inducible system for plants. Plant Physiology 170: 627–641.
Smetana O, Makila R, Lyu M, Amiryousefi A, Sanchez Rodriguez F, Wu MF, Sole‐Gil A, Leal Gavarron M, Siligato R, Miyashima S et al. 2019. High levels of auxin signalling define the stem‐cell organizer of the vascular cambium. Nature 565: 485–489.
Smit ME, McGregor SR, Sun H, Gough C, Bagman AM, Soyars CL, Kroon JT, Gaudinier A, Williams CJ, Yang X et al. 2020. A PXY‐mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell 32: 319–335.
Stahl Y, Wink RH, Ingram GC, Simon R. 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Current Biology 19: 909–914.
Stewart RN, Dermen H. 1970. Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. American Journal of Botany 57: 816–826.
Su C, Kokosza A, Xie X, Pencik A, Zhang Y, Raumonen P, Shi X, Muranen S, Topcu MK, Immanen J et al. 2023. Tree architecture: a strigolactone‐deficient mutant reveals a connection between branching order and auxin gradient along the tree stem. Proceedings of the National Academy of Sciences, USA 120: e2308587120.
Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23: 3247–3259.
Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, Kumar V, Mannapperuma C, Delhomme N, Nilsson O et al. 2017. AspWood: high‐spatial‐resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29: 1585–1604.
Tameshige T, Ikematsu S, Torii KU, Uchida N. 2017. Stem development through vascular tissues: EPFL‐ERECTA family signaling that bounces in and out of phloem. Journal of Experimental Botany 68: 45–53.
Tang X, Wang C, Chai G, Wang D, Xu H, Liu Y, He G, Liu S, Zhang Y, Kong Y et al. 2022. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in Populus. Plant Cell 34: 3364–3382.
Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole‐3‐acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology 115: 577–585.
Uchida N, Tasaka M. 2013. Regulation of plant vascular stem cells by endodermis‐derived EPFL‐family peptide hormones and phloem‐expressed ERECTA‐family receptor kinases. Journal of Experimental Botany 64: 5335–5343.
Uchida N, Torii KU. 2019. Stem cells within the shoot apical meristem: identity, arrangement and communication. Cellular and Molecular Life Sciences 76: 1067–1080.
Uggla C, Moritz T, Sandberg G, Sundberg B. 1996. Auxin as a positional signal in pattern formation in plants. Proceedings of the National Academy of Sciences, USA 93: 9282–9286.
Ursache R, Andersen TG, Marhavy P, Geldner N. 2018. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. The Plant Journal 93: 399–412.
Wang N, Bagdassarian KS, Doherty RE, Kroon JT, Connor KA, Wang XY, Wang W, Jermyn IH, Turner SR, Etchells JP. 2019. Organ‐specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development 146: dev177105.
Wang X, Ye L, Lyu M, Ursache R, Loytynoja A, Mähönen AP. 2020. An inducible genome editing system for plants. Nature Plants 6: 766–772.
Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. 2008. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proceedings of the National Academy of Sciences, USA 105: 18625–18630.
Xu C, Shen Y, He F, Fu X, Yu H, Lu W, Li Y, Li C, Fan D, Wang HC et al. 2019. Auxin‐mediated Aux/IAA‐ARF‐HB signaling cascade regulates secondary xylem development in Populus. New Phytologist 222: 752–767.
Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes & Development 25: 2025–2030.
Yang S, Wang S, Li S, Du Q, Qi L, Wang W, Chen J, Wang H. 2020. Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. Journal of Experimental Botany 71: 7160–7170.
Ye L, Wang X, Lyu M, Siligato R, Eswaran G, Vainio L, Blomster T, Zhang J, Mähönen AP. 2021. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Current Biology 31: 3365–3373.
Yordanov YS, Regan S, Busov V. 2010. Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. Plant Cell 22: 3662–3677.
Yu Q, Cheng C, Zhou X, Li Y, Hu Y, Yang C, Zhou Y, Soliman TMA, Zhang H, Wang Q et al. 2023. Ethylene controls cambium stem cell activity via promoting local auxin biosynthesis. New Phytologist 239: 964–978.
Zhang H, Lin X, Han Z, Wang J, Qu LJ, Chai J. 2016. SERK family receptor‐like kinases function as co‐receptors with PXY for plant vascular development. Molecular Plant 9: 1406–1414.
Zhang J, Eswaran G, Alonso‐Serra J, Kucukoglu M, Xiang J, Yang W, Elo A, Nieminen K, Damen T, Joung JG et al. 2019. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nature Plants 5: 1033–1042.
Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda‐Paz JL, Tarr PT, Yan A, Kay SA, Meyerowitz EM. 2015. Control of plant stem cell function by conserved interacting transcriptional regulators. Nature 517: 377–380.
Zhu Y, Song D, Xu P, Sun J, Li L. 2018. A HD‐ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnology Journal 16: 808–817.
معلومات مُعتمدة: 346141 Biotieteiden ja Ympäristön Tutkimuksen Toimikunta; ALTF_1235-2020 European Molecular Biology Organization; 819422 International ERC_ European Research Council
فهرسة مساهمة: Keywords: phloem; radial growth; secondary growth; stem cell; vascular cambium; xylem
المشرفين على المادة: 0 (Plant Growth Regulators)
تواريخ الأحداث: Date Created: 20240619 Date Completed: 20240704 Latest Revision: 20240704
رمز التحديث: 20240704
DOI: 10.1111/nph.19897
PMID: 38890801
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8137
DOI:10.1111/nph.19897