دورية أكاديمية

A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology.

التفاصيل البيبلوغرافية
العنوان: A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology.
المؤلفون: Sutton NM; Bioengineering Department, George Mason University, Fairfax, VA 22030, USA., Gutiérrez-Guzmán BE; Bioengineering Department, George Mason University, Fairfax, VA 22030, USA., Dannenberg H; Bioengineering Department, George Mason University, Fairfax, VA 22030, USA.; Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA., Ascoli GA; Bioengineering Department, George Mason University, Fairfax, VA 22030, USA.; Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA.
المصدر: International journal of molecular sciences [Int J Mol Sci] 2024 May 31; Vol. 25 (11). Date of Electronic Publication: 2024 May 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI, [2000-
مواضيع طبية MeSH: Models, Neurological* , Grid Cells*/physiology , Synapses*/physiology , Entorhinal Cortex*/physiology , Entorhinal Cortex*/cytology , Action Potentials*/physiology, Animals ; Computer Simulation ; Neurons/physiology ; Neurons/cytology ; Hippocampus/physiology ; Hippocampus/cytology ; Nerve Net/physiology ; Nerve Net/cytology ; Neural Networks, Computer
مستخلص: Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal is to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software (version 1.0) is released as open source to enable broad community reuse and encourage novel applications.
التعليقات: Update of: bioRxiv. 2024 May 01:2024.04.29.591748. doi: 10.1101/2024.04.29.591748. (PMID: 38746202)
References: Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120520. (PMID: 24366132)
Cell. 2011 Nov 23;147(5):1159-70. (PMID: 22100643)
J Vis Exp. 2012 Mar 28;(61):. (PMID: 22491152)
PLoS Comput Biol. 2019 Oct 28;15(10):e1007462. (PMID: 31658260)
Neuron. 2015 Jun 3;86(5):1253-64. (PMID: 25982367)
Nature. 2012 Dec 6;492(7427):72-8. (PMID: 23222610)
Elife. 2021 Sep 14;10:. (PMID: 34520345)
Neuroscience. 2000;99(3):413-22. (PMID: 11029534)
Elife. 2015 Sep 03;4:e08362. (PMID: 26335200)
Brain Inform. 2017 Mar;4(1):1-12. (PMID: 27747821)
Neuron. 2023 Apr 5;111(7):936-953. (PMID: 37023717)
Neuron. 2016 Jan 6;89(1):194-208. (PMID: 26711115)
Cold Spring Harb Perspect Biol. 2012 May 01;4(5):. (PMID: 22491782)
Nature. 2022 Feb;602(7895):123-128. (PMID: 35022611)
Elife. 2015 Jul 06;4:. (PMID: 26146940)
bioRxiv. 2024 Mar 29;:. (PMID: 38585941)
Neural Comput. 2019 Dec;31(12):2324-2347. (PMID: 31614108)
Front Neural Circuits. 2012 Apr 18;6:16. (PMID: 22529780)
Cogn Syst Res. 2021 Dec;70:80-92. (PMID: 34504394)
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120515. (PMID: 24366129)
Nat Rev Neurosci. 2005 May;6(5):389-97. (PMID: 15861181)
PLoS One. 2011;6(10):e25687. (PMID: 21991332)
Curr Opin Behav Sci. 2017 Oct;17:147-154. (PMID: 29333481)
Sci Rep. 2019 Nov 29;9(1):17915. (PMID: 31784578)
Cell. 2017 Oct 19;171(3):507-521.e17. (PMID: 28965758)
Brain Res. 2015 Sep 24;1621:355-67. (PMID: 25451111)
eNeuro. 2016 Nov 18;3(6):. (PMID: 27896314)
Science. 2014 Feb 21;343(6173):896-901. (PMID: 24457215)
Elife. 2016 Dec 23;5:. (PMID: 28009257)
Nature. 2015 Feb 12;518(7538):232-235. (PMID: 25673417)
eNeuro. 2021 Feb 25;8(1):. (PMID: 33531369)
Elife. 2024 Feb 12;12:. (PMID: 38345923)
Curr Biol. 2014 Feb 3;24(3):252-62. (PMID: 24440398)
Nat Neurosci. 2013 Mar;16(3):318-24. (PMID: 23334580)
Nat Neurosci. 2018 Jan;21(1):81-91. (PMID: 29230055)
Curr Opin Neurobiol. 2014 Apr;25:169-75. (PMID: 24561907)
Neurobiol Dis. 2017 Dec;108:261-276. (PMID: 28860088)
PLoS Biol. 2021 May 6;19(5):e3001213. (PMID: 33956790)
J Neurosci. 2006 Apr 19;26(16):4266-76. (PMID: 16624947)
Nature. 2005 Aug 11;436(7052):801-6. (PMID: 15965463)
Nature. 2015 Feb 12;518(7538):207-12. (PMID: 25673414)
Hippocampus. 2008;18(12):1200-12. (PMID: 19021257)
Science. 2006 May 5;312(5774):758-62. (PMID: 16675704)
Commun Biol. 2022 May 5;5(1):418. (PMID: 35513471)
Cognit Comput. 2023 Jul;15(4):1190-1210. (PMID: 37663748)
PLoS Comput Biol. 2017 Jun 19;13(6):e1005597. (PMID: 28628647)
Science. 2008 Dec 19;322(5909):1865-8. (PMID: 19095945)
Front Neural Circuits. 2022 Aug 25;16:957441. (PMID: 36092276)
IEEE Trans Biomed Eng. 2019 Oct;66(10):2728-2739. (PMID: 30676938)
Neuron. 2011 Aug 25;71(4):589-603. (PMID: 21867877)
Nature. 2015 Jul 23;523(7561):419-24. (PMID: 26176924)
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1627-E1636. (PMID: 29386397)
Eur J Neurosci. 2022 Apr;55(7):1724-1741. (PMID: 35301768)
J Neurosci. 2021 Feb 24;41(8):1665-1683. (PMID: 33361464)
Elife. 2015 Sep 24;4:. (PMID: 26402459)
Hippocampus. 2020 Apr;30(4):314-331. (PMID: 31472001)
Neuron. 2013 Jan 9;77(1):141-54. (PMID: 23312522)
Science. 2008 Jul 4;321(5885):53-7. (PMID: 18599766)
Nat Commun. 2016 Nov 04;7:13249. (PMID: 27811848)
J Physiol. 2016 Nov 15;594(22):6547-6557. (PMID: 27870120)
Nat Rev Neurosci. 2014 Jul;15(7):466-81. (PMID: 24917300)
Elife. 2020 Dec 10;9:. (PMID: 33300873)
Commun Biol. 2019 Oct 4;2:360. (PMID: 31602409)
Curr Opin Neurobiol. 2021 Oct;70:206-213. (PMID: 34861597)
J Neurosci. 2019 May 1;39(18):3434-3453. (PMID: 30804092)
Neural Plast. 2008;2008:381243. (PMID: 18769556)
Nat Neurosci. 2010 Aug;13(8):987-94. (PMID: 20657591)
eNeuro. 2022 Feb 16;9(1):. (PMID: 35105656)
Nat Neurosci. 2014 May;17(5):710-8. (PMID: 24705183)
Cell Rep. 2018 Nov 13;25(7):1872-1884.e4. (PMID: 30428354)
Neurosci Biobehav Rev. 2019 Oct;105:24-33. (PMID: 31276715)
Hippocampus. 2020 May;30(5):472-487. (PMID: 31596053)
PLoS Comput Biol. 2009 Feb;5(2):e1000291. (PMID: 19229307)
Neural Comput. 2020 Feb;32(2):330-394. (PMID: 31835003)
J Neurosci. 2014 Apr 30;34(18):6245-59. (PMID: 24790195)
J Chem Neuroanat. 2005 Oct;30(2-3):105-18. (PMID: 16081247)
Elife. 2018 Sep 14;7:. (PMID: 30215597)
bioRxiv. 2024 Feb 17;:. (PMID: 37398455)
Hippocampus. 2007;17(12):1252-71. (PMID: 17924530)
Neurosci Res. 2020 Apr;153:1-7. (PMID: 31276699)
Res Sq. 2023 Aug 23;:. (PMID: 37674706)
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2726-34. (PMID: 23010933)
Commun Biol. 2020 Dec 10;3(1):754. (PMID: 33303963)
معلومات مُعتمدة: R00 NS116129 United States NS NINDS NIH HHS; R01 NS039600 United States NS NINDS NIH HHS; R01NS39600 United States NH NIH HHS; R00NS116129 United States NH NIH HHS
فهرسة مساهمة: Keywords: computational model; entorhinal cortex; hippocampus; mice; neural network; neuron types; spatial navigation
تواريخ الأحداث: Date Created: 20240619 Date Completed: 20240619 Latest Revision: 20240701
رمز التحديث: 20240701
مُعرف محوري في PubMed: PMC11173171
DOI: 10.3390/ijms25116059
PMID: 38892248
قاعدة البيانات: MEDLINE
الوصف
تدمد:1422-0067
DOI:10.3390/ijms25116059