دورية أكاديمية

RNASeq highlights ATF6 pathway regulators for CHO cell engineering with different impacts of ATF6β and WFS1 knockdown on fed-batch production of IgG 1 .

التفاصيل البيبلوغرافية
العنوان: RNASeq highlights ATF6 pathway regulators for CHO cell engineering with different impacts of ATF6β and WFS1 knockdown on fed-batch production of IgG 1 .
المؤلفون: Rives D; Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA., Peak C; Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA., Blenner MA; Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA. blenner@udel.edu.; Department of Chemical & Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA. blenner@udel.edu.
المصدر: Scientific reports [Sci Rep] 2024 Jun 19; Vol. 14 (1), pp. 14141. Date of Electronic Publication: 2024 Jun 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Cricetulus* , Activating Transcription Factor 6*/metabolism , Activating Transcription Factor 6*/genetics , Immunoglobulin G*/genetics , Immunoglobulin G*/metabolism , Unfolded Protein Response*/genetics, Animals ; CHO Cells ; Endoplasmic Reticulum Stress/genetics ; Gene Knockdown Techniques ; Cell Engineering/methods ; Batch Cell Culture Techniques/methods ; Membrane Proteins/metabolism ; Membrane Proteins/genetics
مستخلص: Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G 1 (IgG 1 ) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG 1 producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG 1 producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6β and WFS1, are rational engineering targets. Although both ATF6β and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG 1 -producing CHO cell line. Stable knockdown of ATF6β decreased cell growth without decreasing titer; however, knockdown of WFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship between ATF6β and WFS1 expression, but upregulation of WFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown of WFS1 had negative impacts on UPR activation and product mRNA expression, knockdown of ATF6β improved the UPR specifically later in fed-batch leading to increased overall productivity.
(© 2024. The Author(s).)
References: Gupta, S. K. et al. Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS ONE 12, e0181455 (2017). (PMID: 10.1371/journal.pone.0181455287634595538670)
Butler, M. & Spearman, M. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30, 107–112 (2014). (PMID: 10.1016/j.copbio.2014.06.01025005678)
Nakamura, T. & Omasa, T. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. J. Biosci. Bioeng. 120, 323–329 (2015). (PMID: 10.1016/j.jbiosc.2015.01.00225792187)
Ali, A. S. et al. Multi-omics study on the impact of cysteine feed level on cell viability and mab production in a CHO bioprocess. Biotechnol. J. 14, 1800352 (2019). (PMID: 10.1002/biot.201800352)
Albrecht, S. et al. Proteomics in biomanufacturing control: Protein dynamics of CHO-K1 cells and conditioned media during apoptosis and necrosis. Biotechnol. Bioeng. 115, 1509–1520 (2018). (PMID: 10.1002/bit.2656329427454)
Albrecht, S. et al. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control. Anal. Bioanal. Chem. 410, 3197–3207 (2018). (PMID: 10.1007/s00216-018-1029-329607450)
Torres, M. et al. Metabolic profiling of Chinese hamster ovary cell cultures at different working volumes and agitation speeds using spin tube reactors. Biotechnol. Prog. https://doi.org/10.1002/btpr.3099 (2021). (PMID: 10.1002/btpr.309933169492)
Bedoya-López, A. et al. Effect of temperature downshift on the transcriptomic responses of chinese hamster ovary cells using recombinant human tissue plasminogen activator production culture. PLoS ONE 11, e0151529 (2016). (PMID: 10.1371/journal.pone.0151529269911064798216)
Torres, M. et al. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS ONE 13, e0194510 (2018). (PMID: 10.1371/journal.pone.0194510295660865864046)
Tung, M. et al. High intracellular seed train BiP levels correlate with poor production culture performance in CHO cells. Biotechnol. J. 13, 1700746 (2018). (PMID: 10.1002/biot.201700746)
Sinharoy, P., Aziz, A. H., Majewska, N. I., Ahuja, S. & Handlogten, M. W. Perfusion reduces bispecific antibody aggregation via mitigating mitochondrial dysfunction-induced glutathione oxidation and ER stress in CHO cells. Sci. Rep. 10, 16620 (2020). (PMID: 10.1038/s41598-020-73573-4330241757538420)
Gutiérrez-González, M. et al. Transcription factor engineering in CHO cells for recombinant protein production. Crit. Rev. Biotechnol. 39, 665–679 (2019). (PMID: 10.1080/07388551.2019.160549631030575)
Kyeong, M. & Lee, J. S. Endogenous BiP reporter system for simultaneous identification of ER stress and antibody production in Chinese hamster ovary cells. Metab. Eng. 72, 35–45 (2022). (PMID: 10.1016/j.ymben.2022.02.00235182754)
Hetz, C. & Papa, F. R. The unfolded protein response and cell fate control. Mol. Cell 69, 169–181 (2018). (PMID: 10.1016/j.molcel.2017.06.01729107536)
Oslowski, C. M. & Urano, F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. In Methods in Enzymology (eds Oslowski, C. M. & Urano, F.) (Elsevier, 2011).
Hiramatsu, N., Joseph, V. T. & Lin, J. H. Monitoring and manipulating mammalian unfolded protein response. In Methods in Enzymology (eds Hiramatsu, N. et al.) (Elsevier, 2011).
Jäger, R., Bertrand, M. J. M., Gorman, A. M., Vandenabeele, P. & Samali, A. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol. Cell 104, 259–270 (2012). (PMID: 10.1111/boc.20110005522268789)
Sicari, D., Delaunay-Moisan, A., Combettes, L., Chevet, E. & Igbaria, A. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems. FEBS J. 287, 27–42 (2020). (PMID: 10.1111/febs.1510731647176)
Hansen, H. G., Pristovšek, N., Kildegaard, H. F. & Lee, G. M. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol. Adv. 35, 64–76 (2017). (PMID: 10.1016/j.biotechadv.2016.11.00827931938)
Pieper, L. A., Strotbek, M., Wenger, T., Olayioye, M. A. & Hausser, A. ATF6β-based fine-tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese hamster ovary cells: ATF6β-based CHO cell engineering. Biotechnol. Bioeng. 114, 1310–1318 (2017). (PMID: 10.1002/bit.2626328165157)
Thuerauf, D. J., Marcinko, M., Belmont, P. J. & Glembotski, C. C. Effects of the Isoform-specific characteristics of ATF6α and ATF6β on endoplasmic reticulum stress response gene expression and cell viability. J. Biol. Chem. 282, 22865–22878 (2007). (PMID: 10.1074/jbc.M70121320017522056)
Thuerauf, D. J., Morrison, L. & Glembotski, C. C. Opposing roles for ATF6α and ATF6β in endoplasmic reticulum stress response gene induction. J. Biol. Chem. 279, 21078–21084 (2004). (PMID: 10.1074/jbc.M40071320014973138)
Kokame, K., Kato, H. & Miyata, T. Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276, 9199–9205 (2001). (PMID: 10.1074/jbc.M01048620011112790)
Maldonado-Agurto, R. & Dickson, A. J. Multiplexed digital mRNA expression analysis profiles system-wide changes in mRNA abundance and responsiveness of UPR-specific gene expression changes during batch culture of recombinant chinese hamster ovary cells. Biotechnol. J. 13, 1700429 (2018). (PMID: 10.1002/biot.201700429)
Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of thecis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 274, 2592 (1999). (PMID: 10.1016/S0021-9258(19)88214-5)
Hillary, R. F. & FitzGerald, U. A lifetime of stress: ATF6 in development and homeostasis. J. Biomed. Sci. 25, 48 (2018). (PMID: 10.1186/s12929-018-0453-1298015005968583)
Adachi, Y. et al. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 33, 75–89 (2008). (PMID: 10.1247/csf.0704418360008)
Yamamoto, K. et al. Transcriptional Induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007). (PMID: 10.1016/j.devcel.2007.07.01817765680)
Guan, D. et al. N-glycosylation of ATF6β is essential for its proteolytic cleavage and transcriptional repressor function to ATF6α. J. Cell. Biochem. 108, 825–831 (2009). (PMID: 10.1002/jcb.2231019693772)
Odisho, T., Zhang, L. & Volchuk, A. ATF6β regulates the Wfs1 gene and has a cell survival role in the ER stress response in pancreatic β-cells. Exp. Cell Res. 330, 111–122 (2015). (PMID: 10.1016/j.yexcr.2014.10.00725447309)
Fonseca, S. G. et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120, 744–755 (2010). (PMID: 10.1172/JCI39678201603522827948)
Fonseca, S. G. et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic β-cells. J. Biol. Chem. 280, 39609–39615 (2005). (PMID: 10.1074/jbc.M50742620016195229)
Henry, M. et al. Clonal variation in productivity and proteolytic clipping of an Fc-fusion protein in CHO cells: Proteomic analysis suggests a role for defective protein folding and the UPR. J. Biotechnol. 281, 21–30 (2018). (PMID: 10.1016/j.jbiotec.2018.05.01829860056)
Kretzmer, C. et al. De novo assembly and annotation of the CHOZN® GS −/− genome supports high-throughput genome-scale screening. Biotechnol. Bioeng. https://doi.org/10.1002/bit.28226 (2022). (PMID: 10.1002/bit.28226360730829825924)
Rouiller, Y. et al. A high-throughput media design approach for high performance mammalian fed-batch cultures. mAbs 5, 501–511 (2013). (PMID: 10.4161/mabs.23942235635834169041)
Mayrhofer, P., Castan, A. & Kunert, R. Shake tube perfusion cell cultures are suitable tools for the prediction of limiting substrate, CSPR, bleeding strategy, growth and productivity behavior. J. Chem. Technol. Biotechnol. 96, 2930–2939 (2021). (PMID: 10.1002/jctb.6848)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 10.1093/bioinformatics/btu170246954044103590)
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 10.1093/bioinformatics/bts63523104886)
Rupp, O. et al. A reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotechnol. Bioeng. 115, 2087–2100 (2018). (PMID: 10.1002/bit.26722297044596045439)
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). (PMID: 10.1093/bioinformatics/btu63825260700)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 10.1186/s13059-014-0550-8255162814302049)
Brown, A. J., Gibson, S., Hatton, D. & James, D. C. Transcriptome-based identification of the optimal reference CHO Genes for normalisation of qPCR data. Biotechnol. J. 13, 1700259 (2018). (PMID: 10.1002/biot.201700259)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001). (PMID: 10.1006/meth.2001.126211846609)
Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009). (PMID: 10.1371/journal.pone.0006529196573942717805)
Schlatter, S. et al. On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol. Prog. 21, 122–133 (2008). (PMID: 10.1021/bp049780w)
Pybus, L. P. et al. Model-directed engineering of “difficult-to-express” monoclonal antibody production by Chinese hamster ovary cells: Improving difficult-to-express MAb expression. Biotechnol. Bioeng. 111, 372–385 (2014). (PMID: 10.1002/bit.2511624081924)
Prashad, K. & Mehra, S. Dynamics of unfolded protein response in recombinant CHO cells. Cytotechnology 67, 237–254 (2015). (PMID: 10.1007/s10616-013-9678-824504562)
Shergalis, A. G., Hu, S., Iii, A. B. & Neamati, N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol. Ther. https://doi.org/10.1016/j.pharmthera.2020.107525 (2020). (PMID: 10.1016/j.pharmthera.2020.107525322013137316501)
Talbot, N. E., Mead, E. J., Davies, S. A., Uddin, S. & Smales, C. M. Application of ER stress biomarkers to predict formulated monoclonal antibody stability. Biotechnol. J. 14, 1900024 (2019). (PMID: 10.1002/biot.201900024)
Harreither, E. et al. Microarray profiling of preselected CHO host cell subclones identifies gene expression patterns associated with in-creased production capacity. Biotechnol. J. 10, 1625–1638 (2015). (PMID: 10.1002/biot.20140085726315449)
Kaas, C. S. Characterization of Chinese Hamster Ovary Cells Producing Coagulation Factor VIII Using Multi-omics Tools (Technical University of Denmark, 2015).
McKimpson, W. M. & Kitsis, R. N. A new role for the ER unfolded protein response mediator ATF6: Induction of a generalized antioxidant program. Circ. Res. 120, 759–761 (2017). (PMID: 10.1161/CIRCRESAHA.117.310577282547965345692)
Jin, J.-K. et al. ATF6 decreases myocardial ischemia/reperfusion damage and links ER stress and oxidative stress signaling pathways in the heart. Circ. Res. 120, 862–875 (2017). (PMID: 10.1161/CIRCRESAHA.116.31026627932512)
Sommeregger, W. et al. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Biotechnol. Bioeng. 113, 1902–1912 (2016). (PMID: 10.1002/bit.25957269135744985663)
Costello, A. et al. Depletion of endogenous miRNA-378-3p increases peak cell density of CHO DP12 cells and is correlated with elevated levels of ubiquitin carboxyl-terminal hydrolase 14. J. Biotechnol. 288, 30–40 (2018). (PMID: 10.1016/j.jbiotec.2018.10.00830389639)
Orellana, C. A. et al. High-antibody-producing Chinese hamster ovary cells up-regulate intracellular protein transport and glutathione synthesis. J. Proteome Res. 14, 609–618 (2015). (PMID: 10.1021/pr501027c25495469)
Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. MCB 23, 7448–7459 (2003). (PMID: 10.1128/MCB.23.21.7448-7459.200314559994207643)
Yamamoto, K. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE UPRE and ERSE-II. J. Biochem. 136, 343–350 (2004). (PMID: 10.1093/jb/mvh12215598891)
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001). (PMID: 10.1016/S0092-8674(01)00611-011779464)
Sharma, R. B., Darko, C. & Alonso, L. C. Intersection of the ATF6 and XBP1 ER stress pathways in mouse islet cells. J. Biol. Chem. 295, 14164–14177 (2020). (PMID: 10.1074/jbc.RA120.014173327882147549035)
Dias-Gunasekara, S. et al. Tissue-specific expression and dimerization of the endoplasmic reticulum oxidoreductase Ero1β. J. Biol. Chem. 280, 33066–33075 (2005). (PMID: 10.1074/jbc.M50502320016012172)
Pagani, M. et al. Endoplasmic reticulum oxidoreductin 1-Lβ (ERO1-Lβ), a human gene induced in the course of the unfolded protein response. J. Biol. Chem. 275, 23685–23692 (2000). (PMID: 10.1074/jbc.M00306120010818100)
Görlach, A., Klappa, P. & Kietzmann, T. The endoplasmic reticulum: Folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 8, 1391–1418 (2006). (PMID: 10.1089/ars.2006.8.139116986999)
Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13, 351–364 (2007). (PMID: 10.1016/j.devcel.2007.07.00517765679)
Bommiasamy, H. et al. ATF6 induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. 122, 1626–1636 (2009). (PMID: 10.1242/jcs.045625194202372680102)
Coe, H. & Michalak, M. Calcium binding chaperones of the endoplasmic reticulum. Gen. Physiol. Biophys. 28, F96–F103 (2009). (PMID: 20093733)
Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I. & Opas, M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417, 651–666 (2009). (PMID: 10.1042/BJ2008184719133842)
Mohan, C. & Lee, G. M. Effect of inducible co-overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant Chinese hamster ovary cells. Biotechnol. Bioeng. 107, 337–346 (2010). (PMID: 10.1002/bit.2278120506311)
Zito, E. et al. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol. Cell 40, 787–797 (2010). (PMID: 10.1016/j.molcel.2010.11.010211454863026605)
Zito, E., Chin, K.-T., Blais, J., Harding, H. P. & Ron, D. ERO1-β, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J. Cell Biol. 188, 821–832 (2010). (PMID: 10.1083/jcb.200911086203084252845084)
Zito, E. ERO1: A protein disulfide oxidase and H 2 O 2 producer. Free Radic. Biol. Med. 83, 299–304 (2015). (PMID: 10.1016/j.freeradbiomed.2015.01.01125651816)
Wang, L., Zhu, L. & Wang, C. The endoplasmic reticulum sulfhydryl oxidase Ero1β drives efficient oxidative protein folding with loose regulation. Biochem. J. 434, 113–121 (2011). (PMID: 10.1042/BJ2010135721091435)
Cain, K. et al. A CHO cell line engineered to express XBP1 and ERO1-Lα has increased levels of transient protein expression. Biotechnol. Prog. 29, 697–706 (2013). (PMID: 10.1002/btpr.169323335490)
Hartley, C. L. et al. Armet/Manf and Creld2 are components of a specialized ER stress response provoked by inappropriate formation of disulphide bonds: implications for genetic skeletal diseases. Hum. Mol. Genet. 22, 5262–5275 (2013). (PMID: 10.1093/hmg/ddt383239561753842181)
Shoulders, M. D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013). (PMID: 10.1016/j.celrep.2013.03.024235831823754422)
Hussain, H., Maldonado-Agurto, R. & Dickson, A. J. The endoplasmic reticulum and unfolded protein response in the control of mammalian recombinant protein production. Biotechnol. Lett. 36, 1581–1593 (2014). (PMID: 10.1007/s10529-014-1537-y24752815)
Wang, S. et al. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov. 4, 2 (2018). (PMID: 10.1038/s41421-017-0003-0294232705798892)
Liu, H. & May, K. Disulfide bond structures of IgG molecules: Structural variations, chemical modifications and possible impacts to stability and biological function. mAbs 4, 17–23 (2012). (PMID: 10.4161/mabs.4.1.18347223274273338938)
Martinez-Lopez, J. E., Coleman, O., Meleady, P. & Clynes, M. Transfection of miR-31* boosts oxidative phosphorylation metabolism in the mitochondria and enhances recombinant protein production in Chinese hamster ovary cells. J. Biotechnol. 333, 86–96 (2021). (PMID: 10.1016/j.jbiotec.2021.04.01233940052)
Orellana, C. A. et al. RNA-seq highlights high clonal variation in monoclonal antibody producing CHO cells. Biotechnol. J. 13, 1700231 (2018). (PMID: 10.1002/biot.201700231)
Johari, Y. B., Estes, S. D., Alves, C. S., Sinacore, M. S. & James, D. C. Integrated cell and process engineering for improved transient production of a “difficult-to-express” fusion protein by CHO cells: Improving difficult-to-express protein production. Biotechnol. Bioeng. 112, 2527–2542 (2015). (PMID: 10.1002/bit.2568726126657)
Becker, E., Florin, L., Pfizenmaier, K. & Kaufmann, H. An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J. Biotechnol. 135, 217–223 (2008). (PMID: 10.1016/j.jbiotec.2008.03.00818448183)
Gulis, G., Simi, K. C. R., de Toledo, R. R., Maranhao, A. Q. & Brigido, M. M. Optimization of heterologous protein production in Chinese hamster ovary cells under overexpression of spliced form of human X-box binding protein. BMC Biotechnol. 14, 26 (2014). (PMID: 10.1186/1472-6750-14-26247257073995513)
Rahimpour, A. et al. Development of genetically modified chinese hamster ovary host cells for the enhancement of recombinant tissue plasminogen activator expression. Malays. J. Med. Sci. 23, 6–13 (2016). (PMID: 275471094976708)
Reinhart, D. et al. Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: CHO expression hosts favor either mAb production or biomass synthesis. Biotechnol. J. 14, 1700686 (2019). (PMID: 10.1002/biot.201700686)
Saghaleyni, R. et al. Enhanced metabolism and negative regulation of ER stress support higher erythropoietin production in HEK293 cells. Cell Rep. 39, 110936 (2022). (PMID: 10.1016/j.celrep.2022.11093635705050)
Nguyen, D. T. et al. The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci. Rep. 11, 13086 (2021). (PMID: 10.1038/s41598-021-92529-w341585848219835)
Forouhan, M., Mori, K. & Boot-Handford, R. P. Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X. Matrix Biol. 70, 50–71 (2018). (PMID: 10.1016/j.matbio.2018.03.004295228136090092)
Kakiuchi, C., Ishiwata, M., Hayashi, A. & Kato, T. XBP1 induces WFS1 through an endoplasmic reticulum stress response element-like motif in SH-SY5Y cells: XBP1 induces WFS1 through endoplasmic reticulum stress response element. J. Neurochem. 97, 545–555 (2006). (PMID: 10.1111/j.1471-4159.2006.03772.x16539657)
Ueda, K. et al. Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic β-cells via transcriptional activation. Eur. J. Endocrinol. 153, 167–176 (2005). (PMID: 10.1530/eje.1.0194515994758)
Ishikawa, T. et al. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Mol. Biol. Cell 24, 1387–1395 (2013). (PMID: 10.1091/mbc.e12-11-0830234476993639050)
Correll, R. N. et al. Overlapping and differential functions of ATF6α versus ATF6β in the mouse heart. Sci. Rep. 9, 2059 (2019). (PMID: 10.1038/s41598-019-39515-5307658336375966)
Takei, D. et al. WFS1 protein modulates the free Ca 2+ concentration in the endoplasmic reticulum. FEBS Lett. 580, 5635–5640 (2006). (PMID: 10.1016/j.febslet.2006.09.00716989814)
Abreu, D. et al. Wolfram syndrome 1 gene regulates pathways maintaining beta-cell health and survival. Lab. Invest. 100, 849–862 (2020). (PMID: 10.1038/s41374-020-0408-5320604077286786)
Kumar, N., Gammell, P. & Clynes, M. Proliferation control strategies to improve productivity and survival during CHO based production culture: A summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology 53, 33–46 (2007). (PMID: 10.1007/s10616-007-9047-6190031882267618)
Gargi, Roy Shu, Zhang Lina, Li Eileen, Higham Herren, Wu Marcello, Marelli Michael A., Bowen. Development of a fluorescent reporter system for monitoring ER stress in Chinese hamster ovary cells and its application for therapeutic protein production PLOS ONE 12(8), e0183694. https://doi.org/10.1371/journal.pone.0183694 (2017).
Andrew, Samy Kohei, Kaneyoshi Takeshi, Omasa. Improvement of Intracellular Traffic System by Overexpression of KDEL Receptor 1 in Antibody‐Producing CHO Cells Abstract Biotechnology Journal 15(6), https://doi.org/10.1002/biot.v15.610.1002/biot.201900352 (2020).
معلومات مُعتمدة: 1624684, 1512265 National Science Foundation; 1624684, 1512265 National Science Foundation
المشرفين على المادة: 0 (Activating Transcription Factor 6)
0 (Immunoglobulin G)
0 (Membrane Proteins)
تواريخ الأحداث: Date Created: 20240619 Date Completed: 20240619 Latest Revision: 20240705
رمز التحديث: 20240705
مُعرف محوري في PubMed: PMC11187196
DOI: 10.1038/s41598-024-64767-1
PMID: 38898154
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-64767-1