دورية أكاديمية

PIRCHE-II Risk and Acceptable Mismatch Profile Analysis in Solid Organ Transplantation.

التفاصيل البيبلوغرافية
العنوان: PIRCHE-II Risk and Acceptable Mismatch Profile Analysis in Solid Organ Transplantation.
المؤلفون: Niemann M; PIRCHE AG, Berlin, Germany. matthias.niemann@pirche.com., Matern BM; PIRCHE AG, Berlin, Germany.; Center for Translational Immunology, University Medical Center, Utrecht, Netherlands., Spierings E; Center for Translational Immunology, University Medical Center, Utrecht, Netherlands.; Central Diagnostic Laboratory, University Medical Center, Utrecht, Netherlands.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2809, pp. 171-192.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Organ Transplantation*/adverse effects , Histocompatibility Testing*/methods , HLA Antigens*/genetics , HLA Antigens*/immunology , Algorithms* , Epitopes, T-Lymphocyte*/immunology , Epitopes, T-Lymphocyte*/genetics, Humans ; Graft Rejection/immunology ; Graft Rejection/genetics ; Alleles ; Tissue Donors
مستخلص: To optimize outcomes in solid organ transplantation, the HLA genes are regularly compared and matched between the donor and recipient. However, in many cases a transplant cannot be fully matched, due to widespread variation across populations and the hyperpolymorphism of HLA alleles. Mismatches of the HLA molecules in transplanted tissue can be recognized by immune cells of the recipient, leading to immune response and possibly organ rejection. These adverse outcomes are reduced by analysis using epitope-focused models that consider the immune relevance of the mismatched HLA.PIRCHE, an acronym for Predicted Indirectly ReCognizable HLA Epitopes, aims to categorize and quantify HLA mismatches in a patient-donor pair by predicting HLA-derived T cell epitopes. Specifically, the algorithm predicts and counts the HLA-derived peptides that can be presented by the host HLA, known as indirectly-presented T cell epitopes. Looking at the immune-relevant epitopes within HLA allows a more biologically relevant understanding of immune response, and provides an expanded donor pool for a more refined matching strategy compared with allele-level matching. This PIRCHE algorithm is available for analysis of single transplantations, as well as bulk analysis for population studies and statistical analysis for comparison of probability of organ availability and risk profiles.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Opelz G, Döhler B (2007) Effect of human leukocyte antigen compatibility on kidney graft survival: comparative analysis of two decades. Transplantation 84:137–143. (PMID: 1766780310.1097/01.tp.0000269725.74189.b9)
Williams RC, Opelz G, McGarvey CJ et al (2016) The risk of transplant failure with HLA mismatch in first adult kidney allografts from deceased donors. Transplantation 100:1094–1102. (PMID: 26901078808656310.1097/TP.0000000000001115)
Barker DJ, Maccari G, Georgiou X et al (2023) The IPD-IMGT/HLA database. Nucleic Acids Res 51:D1053–D1060. (PMID: 3635064310.1093/nar/gkac1011)
Kramer CSM, Israeli M, Mulder A et al (2019) The long and winding road towards epitope matching in clinical transplantation. Transpl Int 32:16–24. (PMID: 3034179010.1111/tri.13362)
Claas FHJ, Witvliet MD, Duquesnoy RJ et al (2004) The acceptable mismatch program as a fast tool for highly sensitized patients awaiting a cadaveric kidney transplantation: short waiting time and excellent graft outcome. Transplantation 78:190. (PMID: 1528067610.1097/01.TP.0000129260.86766.67)
Heidt S, Haasnoot GW, Claas FHJ (2018) How the definition of acceptable antigens and epitope analysis can facilitate transplantation of highly sensitized patients with excellent long-term graft survival. Curr Opin Organ Transplant 23:493–499. (PMID: 2984619710.1097/MOT.0000000000000545)
Heidt S, Haasnoot GW, Witvliet MD et al (2019) Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients. Am J Transplant 19:2926–2933. (PMID: 31155833679065910.1111/ajt.15486)
Sakamoto S, Iwasaki K, Tomosugi T et al (2020) Analysis of T and B cell epitopes to predict the risk of de novo donor-specific antibody (DSA) production after kidney transplantation: a two-center retrospective cohort study. Front Immunol 11:2000. (PMID: 32973806748144210.3389/fimmu.2020.02000)
Senev A, Coemans M, Lerut E et al (2020) Eplet mismatch load and de novo occurrence of donor-specific anti-HLA antibodies, rejection, and graft failure after kidney transplantation: an observational cohort study. J Am Soc Nephrol 31:2193. (PMID: 32764139746168410.1681/ASN.2020010019)
Kleid L, Walter J, Vorstandlechner M et al (n.d.) Predictive value of molecular matching tools for the development of donor specific HLA-antibodies in patients undergoing lung transplantation. HLA.
Betjes MGH, Peereboom ETM, Otten HG et al (2022) The number of donor HLA-derived T cell epitopes available for indirect antigen presentation determines the risk for vascular rejection after kidney transplantation. Front Immunol 13:973968. (PMID: 36110856946876710.3389/fimmu.2022.973968)
Geneugelijk K, Spierings E (2020) PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics 72:119–129. (PMID: 3174100910.1007/s00251-019-01140-x)
Liu Z, Colovai AI, Tugulea S et al (1996) Indirect recognition of donor HLA-DR peptides in organ allograft rejection. J Clin Invest 98:1150–1157. (PMID: 878767850753710.1172/JCI118898)
Suciu-Foca N, Ciubotariu R, Itescu S et al (1998) Indirect allorecognition of donor HLA-DR peptides in chronic rejection of heart allografts. Transplant Proc 30:3999–4000. (PMID: 986527510.1016/S0041-1345(98)01318-9)
Siu JHY, Surendrakumar V, Richards JA et al (2018) T cell allorecognition pathways in solid organ transplantation. Front Immunol 9:2548. (PMID: 30455697623062410.3389/fimmu.2018.02548)
Duquesnoy RJ (2006) A structurally based approach to determine HLA compatibility at the humoral immune level. Hum Immunol 67:847–862. (PMID: 17145365216929010.1016/j.humimm.2006.08.001)
Kindt TJ, Goldsby RA, Osborne BA et al (2007) Kuby immunology. W. H. Freeman.
Rammensee H-G, Friede T, Stevanović S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228. (PMID: 789032410.1007/BF00172063)
Murphy K, Weaver C (2016) Janeway’s immunobiology. Garland Science/Taylor & Francis Group, LLC, New York, NY. (PMID: 10.1201/9781315533247)
Sullivan CP, Waldmann H (1984) T cell help mechanisms in the in vitro antibody response: the role of linked and non-linked recognition interactions. Immunology 51:343–350. (PMID: 66072121454428)
Steele DJ, Laufer TM, Smiley ST et al (1996) Two levels of help for B cell alloantibody production. J Exp Med 183:699–703. (PMID: 862718510.1084/jem.183.2.699)
Conlon TM, Saeb-Parsy K, Cole JL et al (2012) Germinal center alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells. J Immunol Baltim Md 1950 188:2643–2652.
Niemann M, Matern BM, Spierings E (2022) Snowflake: a deep learning-based human leukocyte antigen matching algorithm considering allele-specific surface accessibility. Front Immunol 13:937587. (PMID: 35967374937236610.3389/fimmu.2022.937587)
Kramer CSM, Koster J, Haasnoot GW et al (2020) HLA-EMMA: a user-friendly tool to analyse HLA class I and class II compatibility on the amino acid level. HLA 96:43–51. (PMID: 32227681731736010.1111/tan.13883)
Klein L, Kyewski B, Allen PM et al (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377–391. (PMID: 24830344475791210.1038/nri3667)
Karosiene E, Rasmussen M, Blicher T et al (2013) NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 65:711–724. (PMID: 2390078310.1007/s00251-013-0720-y)
Vita R, Mahajan S, Overton JA et al (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343. (PMID: 3035739110.1093/nar/gky1006)
Lachmann N, Niemann M, Reinke P et al (2017) Donor–recipient matching based on predicted indirectly recognizable HLA epitopes independently predicts the incidence of de novo donor-specific HLA antibodies following renal transplantation. Am J Transplant 17:3076–3086. (PMID: 2861339210.1111/ajt.14393)
Geneugelijk K, Niemann M, Drylewicz J et al (2018) PIRCHE-II is related to graft failure after kidney transplantation. Front Immunol 9:321. (PMID: 29556227584493010.3389/fimmu.2018.00321)
Unterrainer C, Döhler B, Niemann M et al (2021) Can PIRCHE-II matching outmatch traditional HLA matching? Front Immunol 12:631246. (PMID: 33717167795229610.3389/fimmu.2021.631246)
Niemann M, Matern BM, Spierings E et al (2021) Peptides derived from mismatched paternal human leukocyte antigen predicted to be presented by HLA-DRB1, -DRB3/4/5, -DQ, and -DP induce child-specific antibodies in pregnant women. Front Immunol 12:797360. (PMID: 34992608872504810.3389/fimmu.2021.797360)
Lobashevsky A, Niemann M, Kowinski B et al (2022) Formation of donor-specific antibodies depends on the epitope load of mismatched HLAs in lung transplant recipients: a retrospective single-center study. Clin Transpl 36.
Hamada S, Dumortier J, Thévenin C et al (2020) Predictive value of HLAMatchmaker and PIRCHE-II scores for de novo donor-specific antibody formation after adult and pediatric liver transplantation. Transpl Immunol 61:101306. (PMID: 3242222210.1016/j.trim.2020.101306)
Zheng J, Kuang PD, Zhang Y et al (2019) Relationship of distribution frequency of HLA antigen/antibody and PIRCHE score with DSA production and AMR occurrence. Zhonghua Yi Xue Za Zhi 99:901–906. (PMID: 30917438)
Mangiola M, Ellison MA, Marrari M et al (2022) Immunologic risk stratification of pediatric heart transplant patients by combining HLAMatchmaker and PIRCHE-II. J Heart Lung Transplant 41:952–960. (PMID: 3543721110.1016/j.healun.2022.03.015)
Senev A, Van Loon E, Lerut E et al (2022) Association of predicted HLA T-cell epitope targets and T-cell–mediated rejection after kidney transplantation. Am J Kidney Dis 80:718–729.e1. (PMID: 3569015410.1053/j.ajkd.2022.04.009)
Lezoeva E, Nilsson J, Wüthrich R et al (2022) High PIRCHE scores may allow risk stratification of borderline rejection in kidney transplant recipients. Front Immunol 13:788818. (PMID: 35250973889424410.3389/fimmu.2022.788818)
Lemieux W, Fleischer D, Yang AY et al (2022) Dissecting the impact of molecular T-cell HLA mismatches in kidney transplant failure: a retrospective cohort study. Front Immunol 13:1067075. (PMID: 36505483973050510.3389/fimmu.2022.1067075)
Niemann M, Lachmann N, Geneugelijk K et al (2021) Computational eurotransplant kidney allocation simulations demonstrate the feasibility and benefit of T-cell epitope matching. PLoS Comput Biol 17:e1009248. (PMID: 34314431834583210.1371/journal.pcbi.1009248)
Tomosugi T, Iwasaki K, Sakamoto S et al (2021) Clinical significance of shared T cell epitope analysis in early de novo donor-specific anti-HLA antibody production after kidney transplantation and comparison with shared B cell epitope analysis. Front Immunol 12:621138. (PMID: 33897684806141710.3389/fimmu.2021.621138)
Peereboom ETM, Matern BM, Tomosugi T et al (2021) T-cell epitopes shared between immunizing HLA and donor HLA associate with graft failure after kidney transplantation. Front Immunol 12:784040. (PMID: 34868064863727810.3389/fimmu.2021.784040)
Marsh SGE (2022) Nomenclature for factors of the HLA system, update January, February, and March 2022. HLA 99:674–701. (PMID: 3560911210.1111/tan.14642)
Gragert L, Madbouly A, Freeman J et al (2013) Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum Immunol 74:1313–1320. (PMID: 2380627010.1016/j.humimm.2013.06.025)
Maiers M, Gragert L, Klitz W (2007) High-resolution HLA alleles and haplotypes in the United States population. Hum Immunol 68:779–788. (PMID: 1786965310.1016/j.humimm.2007.04.005)
Geneugelijk K, Wissing J, Koppenaal D et al (2017) Computational approaches to facilitate epitope-based HLA matching in solid organ transplantation. J Immunol Res 2017:1–9. (PMID: 10.1155/2017/9130879)
Milius RP, Heuer M, Valiga D et al (2015) Histoimmunogenetics markup language 1.0: reporting next generation sequencing-based HLA and KIR genotyping. Hum Immunol 76:963–974. (PMID: 26319908467430710.1016/j.humimm.2015.08.001)
Milius RP, Mack SJ, Hollenbach JA et al (2013) Genotype list string: a grammar for describing HLA and KIR genotyping results in a text string. Tissue Antigens 82:106–112. (PMID: 23849068371512310.1111/tan.12150)
فهرسة مساهمة: Keywords: Compatibility; Epitope; HLA; Matching algorithm; Molecular mismatch; Solid organ transplantation
المشرفين على المادة: 0 (HLA Antigens)
0 (Epitopes, T-Lymphocyte)
تواريخ الأحداث: Date Created: 20240622 Date Completed: 20240622 Latest Revision: 20240622
رمز التحديث: 20240623
DOI: 10.1007/978-1-0716-3874-3_12
PMID: 38907898
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3874-3_12