دورية أكاديمية

Topography of the GLP-1/GLP-1 receptor system in the spinal cord of male mice.

التفاصيل البيبلوغرافية
العنوان: Topography of the GLP-1/GLP-1 receptor system in the spinal cord of male mice.
المؤلفون: Ruska Y; Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary., Csibi A; Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary., Dorogházi B; Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary., Szilvásy-Szabó A; Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary., Mohácsik P; Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary., Környei Z; 'Momentum' Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary., Dénes Á; 'Momentum' Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary., Kádár A; Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary., Puskár Z; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary., Hrabovszky E; Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary., Gereben B; Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary., Wittmann G; Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary. wittmann.gabor@koki.hun-ren.hu., Fekete C; Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Szigony Street 43, Budapest, 1083, Hungary. fekete.csaba@koki.hun-ren.hu.
المصدر: Scientific reports [Sci Rep] 2024 Jun 22; Vol. 14 (1), pp. 14403. Date of Electronic Publication: 2024 Jun 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Glucagon-Like Peptide-1 Receptor*/metabolism , Glucagon-Like Peptide-1 Receptor*/genetics , Spinal Cord*/metabolism , Glucagon-Like Peptide 1*/metabolism, Animals ; Male ; Mice ; Cholinergic Neurons/metabolism ; Proglucagon/metabolism ; Proglucagon/genetics ; Mice, Inbred C57BL ; Axons/metabolism
مستخلص: Glucagon-like peptide-1 receptor (GLP-1R) agonists are now commonly used to treat type 2 diabetes and obesity. GLP-1R signaling in the spinal cord has been suggested to account for the mild tachycardia caused by GLP-1R agonists, and may also be involved in the therapeutic effects of these drugs. However, the neuroanatomy of the GLP-1/GLP-1R system in the spinal cord is still poorly understood. Here we applied in situ hybridization and immunohistochemistry to characterize this system, and its relation to cholinergic neurons. GLP-1R transcript and protein were expressed in neuronal cell bodies across the gray matter, in matching distribution patterns. GLP-1R-immunolabeling was also robust in dendrites and axons, especially in laminae II-III in the dorsal horn. Cerebrospinal fluid-contacting neurons expressed GLP-1R protein at exceedingly high levels. Only small subpopulations of cholinergic neurons expressed GLP-1R, including a subset of sympathetic preganglionic neurons at the rostral tip of the intermediolateral nucleus. GLP-1 axons innervated all regions where GLP-1R neurons were distributed, except laminae II-III. Scattered preproglucagon (Gcg) mRNA-expressing neurons were identified in the cervical and lumbar enlargements. The results will facilitate further studies on how GLP-1 regulates the sympathetic system and other autonomic and somatic functions via the spinal cord.
(© 2024. The Author(s).)
References: Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019). (PMID: 31767182681241010.1016/j.molmet.2019.09.010)
Drucker, D. J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 57, 101351 (2022). (PMID: 3462685110.1016/j.molmet.2021.101351)
Krieger, J. P. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides 131, 170342 (2020). (PMID: 3252258510.1016/j.peptides.2020.170342)
Jin, S. L. et al. Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: An immunocytochemical study. J. Comp. Neurol. 271(4), 519–532 (1988). (PMID: 338501610.1002/cne.902710405)
Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77(1), 257–270 (1997). (PMID: 904439110.1016/S0306-4522(96)00434-4)
Merchenthaler, I., Lane, M. & Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403(2), 261–280 (1999). (PMID: 988604710.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8>3.0.CO;2-5)
Gaykema, R. P. et al. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J. Clin. Invest. 127(3), 1031–1045 (2017). (PMID: 28218622533072510.1172/JCI81335)
Liu, J. et al. Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus. Neuron 96(4), 897–909 (2017). (PMID: 29056294572993110.1016/j.neuron.2017.09.042)
Holt, M. K. et al. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food. Diabetes 68(1), 21–33 (2019). (PMID: 3027916110.2337/db18-0729)
Cheng, W. et al. Leptin receptor-expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight 5(7), e134359 (2020). (PMID: 32182221720525510.1172/jci.insight.134359)
Brierley, D. I. et al. Central and peripheral GLP-1 systems independently suppress eating. Nat. Metab. 3(2), 258–273 (2021). (PMID: 33589843711682110.1038/s42255-021-00344-4)
McLean, B. A. et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr. Rev. 42(2), 101–132 (2021). (PMID: 3332017910.1210/endrev/bnaa032)
Cork, S. C. et al. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4(10), 718–731 (2015). (PMID: 26500843458845810.1016/j.molmet.2015.07.008)
Jensen, C. B. et al. Characterization of the glucagonlike peptide-1 receptor in male mouse brain using a novel antibody and in situ hybridization. Endocrinology 159(2), 665–675 (2018). (PMID: 2909596810.1210/en.2017-00812)
Graham, D. L. et al. A novel mouse model of glucagon-like peptide-1 receptor expression: A look at the brain. J. Comp. Neurol. 528(14), 2445–2470 (2020). (PMID: 32170734739281410.1002/cne.24905)
Farkas, E. et al. Distribution and ultrastructural localization of the glucagon-like peptide-1 receptor (GLP-1R) in the rat brain. Brain Struct. Funct. 226(1), 225–245 (2021). (PMID: 3334191910.1007/s00429-020-02189-1)
Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124(10), 4473–4488 (2014). (PMID: 25202980421519010.1172/JCI75276)
Gabery, S. et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 5(6), e133429 (2020). (PMID: 32213703721377810.1172/jci.insight.133429)
Kabahizi, A. et al. Glucagon-like peptide-1 (GLP-1) signalling in the brain: From neural circuits and metabolism to therapeutics. Br. J. Pharmacol. 179(4), 600–624 (2022). (PMID: 3451902610.1111/bph.15682)
Llewellyn-Smith, I. J. et al. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience 284, 872–887 (2015). (PMID: 2545096710.1016/j.neuroscience.2014.10.043)
Holt, M. K. et al. PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice. Mol. Metab. 39, 101024 (2020). (PMID: 32446875731770010.1016/j.molmet.2020.101024)
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360(6385), 176–182 (2018). (PMID: 29545511764387010.1126/science.aam8999)
Sathyamurthy, A. et al. Massively parallel single nucleus transcriptional profiling defines spinal cord neurons and their activity during behavior. Cell Rep. 22(8), 2216–2225 (2018). (PMID: 29466745584908410.1016/j.celrep.2018.02.003)
Gong, N. et al. Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J. Neurosci. 34(15), 5322–5334 (2014). (PMID: 24719110660899910.1523/JNEUROSCI.4703-13.2014)
Lee, C. H. et al. Activation of glucagon-like peptide-1 receptor promotes neuroprotection in experimental autoimmune encephalomyelitis by reducing neuroinflammatory responses. Mol. Neurobiol. 55(4), 3007–3020 (2018). (PMID: 2845694110.1007/s12035-017-0550-2)
Qian, Z. et al. Activation of glucagon-like peptide-1 receptor in microglia attenuates neuroinflammation-induced glial scarring via rescuing Arf and Rho GAP adapter protein 3 expressions after nerve injury. Int. J. Biol. Sci. 18(4), 1328–1346 (2022). (PMID: 35280691889835910.7150/ijbs.68974)
Chen, J. et al. Liraglutide activates autophagy via GLP-1R to improve functional recovery after spinal cord injury. Oncotarget 8(49), 85949–85968 (2017). (PMID: 29156769568965910.18632/oncotarget.20791)
Han, W. et al. Sitagliptin improves functional recovery via GLP-1R-induced anti-apoptosis and facilitation of axonal regeneration after spinal cord injury. J. Cell. Mol. Med. 24(15), 8687–8702 (2020). (PMID: 32573108741268110.1111/jcmm.15501)
Ruska, Y. et al. Expression of glucagon-like peptide 1 receptor in neuropeptide Y neurons of the arcuate nucleus in mice. Brain Struct. Funct. 227(1), 77–87 (2022). (PMID: 3459675510.1007/s00429-021-02380-y)
Wyart, C., Carbo-Tano, M., Cantaut-Belarif, Y., Orts-Del’Immagine, A. & Bohm, U. L. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat. Rev. Neurosci. 24(9), 540–556 (2023). (PMID: 3755890810.1038/s41583-023-00723-8)
Nakamura, Y. et al. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. Elife 12, e83108 (2023). (PMID: 36805807994306710.7554/eLife.83108)
Stoeckel, M. E. et al. Cerebrospinal fluid-contacting neurons in the rat spinal cord, a gamma-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J. Comp. Neurol. 457(2), 159–174 (2003). (PMID: 1254131610.1002/cne.10565)
Gerstmann, K. et al. The role of intraspinal sensory neurons in the control of quadrupedal locomotion. Curr. Biol. 32(11), 2442–2453 (2022). (PMID: 3551269610.1016/j.cub.2022.04.019)
Kim, K. K., Adelstein, R. S. & Kawamoto, S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J. Biol. Chem. 284(45), 31052–31061 (2009). (PMID: 19713214278150510.1074/jbc.M109.052969)
Dredge, B. K. & Jensen, K. B. NeuN/Rbfox3 nuclear and cytoplasmic isoforms differentially regulate alternative splicing and nonsense-mediated decay of Rbfox2. PLoS One 6(6), e21585 (2011). (PMID: 21747913312683210.1371/journal.pone.0021585)
Deuchars, S. A. & Lall, V. K. Sympathetic preganglionic neurons: Properties and inputs. Compr. Physiol. 5(2), 829–869 (2015). (PMID: 2588051510.1002/cphy.c140020)
Tonelli Gombalova, Z. et al. Majority of cerebrospinal fluid-contacting neurons in the spinal cord of C57Bl/6N mice is present in ectopic position unlike in other studied experimental mice strains and mammalian species. J. Comp. Neurol. 528(15), 2523–2550 (2020). (PMID: 3221215910.1002/cne.24909)
Jurcic, N., Michelle, C., Trouslard, J., Wanaverbecq, N. & Kastner, A. Evidence for PKD2L1-positive neurons distant from the central canal in the ventromedial spinal cord and medulla of the adult mouse. Eur. J. Neurosci. 54(3), 4781–4803 (2021). (PMID: 3409733210.1111/ejn.15342)
Fu, Z. et al. Brain endothelial cells regulate glucagon-like peptide 1 entry into the brain via a receptor-mediated process. Front. Physiol. 11, 555 (2020). (PMID: 32547420727407810.3389/fphys.2020.00555)
Todd, A. J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11(12), 823–836 (2010). (PMID: 21068766327794110.1038/nrn2947)
Gardiner, S. M., March, J. E., Kemp, P. A. & Bennett, T. Autonomic nervous system-dependent and -independent cardiovascular effects of exendin-4 infusion in conscious rats. Br. J. Pharmacol. 154(1), 60–71 (2008). (PMID: 18311183243898510.1038/bjp.2008.75)
Baggio, L. L. et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol. Metab. 6(11), 1339–1349 (2017). (PMID: 29107282568127010.1016/j.molmet.2017.08.010)
Strack, A. M., Sawyer, W. B., Marubio, L. M. & Loewy, A. D. Spinal origin of sympathetic preganglionic neurons in the rat. Brain Res. 455(1), 187–191 (1988). (PMID: 341618610.1016/0006-8993(88)90132-1)
Yamamoto, K., Senba, E., Matsunaga, T. & Tohyama, M. Calcitonin gene-related peptide containing sympathetic preganglionic and sensory neurons projecting to the superior cervical ganglion of the rat. Brain Res. 487(1), 158–164 (1989). (PMID: 278768810.1016/0006-8993(89)90952-9)
Pyner, S. & Coote, J. H. A comparison between the adult rat and neonate rat of the architecture of sympathetic preganglionic neurones projecting to the superior cervical ganglion, stellate ganglion and adrenal medulla. J. Auton. Nerv. Syst. 48(2), 153–166 (1994). (PMID: 808939710.1016/0165-1838(94)90031-0)
Pyner, S. & Coote, J. H. Evidence that sympathetic preganglionic neurones are arranged in target-specific columns in the thoracic spinal cord of the rat. J. Comp. Neurol. 342(1), 15–22 (1994). (PMID: 820712510.1002/cne.903420103)
Grkovic, I. & Anderson, C. R. Calretinin-containing preganglionic nerve terminals in the rat superior cervical ganglion surround neurons projecting to the submandibular salivary gland. Brain Res. 684(2), 127–135 (1995). (PMID: 758321310.1016/0006-8993(95)00392-4)
Tang, F. R., Tan, C. K. & Ling, E. A. A light-microscopic study of the intermediolateral nucleus following injection of CB-HRP and Fluorogold into the superior cervical ganglion of the rat. J. Auton. Nerv. Syst. 50(3), 333–338 (1995). (PMID: 771432710.1016/0165-1838(94)00104-R)
Gonsalvez, D. G., Kerman, I. A., McAllen, R. M. & Anderson, C. R. Chemical coding for cardiovascular sympathetic preganglionic neurons in rats. J. Neurosci. 30(35), 11781–11791 (2010). (PMID: 20810898294749110.1523/JNEUROSCI.0796-10.2010)
Pardini, B. J., Lund, D. D. & Schmid, P. G. Organization of the sympathetic postganglionic innervation of the rat heart. J. Auton. Nerv. Syst. 28(3), 193–201 (1989). (PMID: 262846110.1016/0165-1838(89)90146-X)
Wallis, D., Watson, A. H. & Mo, N. Cardiac neurones of autonomic ganglia. Microsc. Res. Tech. 35(1), 69–79 (1996). (PMID: 887306010.1002/(SICI)1097-0029(19960901)35:1<69::AID-JEMT6>3.0.CO;2-N)
Grkovic, I., Edwards, S. L., Murphy, S. M. & Anderson, C. R. Chemically distinct preganglionic inputs to iris-projecting postganglionic neurons in the rat: A light and electron microscopic study. J. Comp. Neurol. 412(4), 606–616 (1999). (PMID: 1046435710.1002/(SICI)1096-9861(19991004)412:4<606::AID-CNE3>3.0.CO;2-Q)
Sundaram, K., Murugaian, J. & Sapru, H. Cardiac responses to the microinjections of excitatory amino acids into the intermediolateral cell column of the rat spinal cord. Brain Res. 482(1), 12–22 (1989). (PMID: 256513610.1016/0006-8993(89)90537-4)
Ter Horst, G. J., Hautvast, R. W., De Jongste, M. J. & Korf, J. Neuroanatomy of cardiac activity-regulating circuitry: A transneuronal retrograde viral labelling study in the rat. Eur. J. Neurosci. 8(10), 2029–2041 (1996). (PMID: 892129310.1111/j.1460-9568.1996.tb00723.x)
Hsu, T. M., Hahn, J. D., Konanur, V. R., Lam, A. & Kanoski, S. E. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission. Neuropsychopharmacology 40(2), 327–337 (2015). (PMID: 2503507810.1038/npp.2014.175)
Cabot, J. B., Alessi, V., Carroll, J. & Ligorio, M. Spinal cord lamina V and lamina VII interneuronal projections to sympathetic preganglionic neurons. J. Comp. Neurol. 347(4), 515–530 (1994). (PMID: 781467210.1002/cne.903470404)
Deuchars, S. A., Brooke, R. E., Frater, B. & Deuchars, J. Properties of interneurones in the intermediolateral cell column of the rat spinal cord: Role of the potassium channel subunit Kv3.1. Neuroscience 106(2), 433–446 (2001). (PMID: 1156651210.1016/S0306-4522(01)00277-9)
Zheng, H., Stornetta, R. L., Agassandian, K. & Rinaman, L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct. Funct. 220(5), 3011–3022 (2015). (PMID: 2501211410.1007/s00429-014-0841-6)
Trapp, S. & Cork, S. C. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309(8), R795-804 (2015). (PMID: 26290108466694510.1152/ajpregu.00333.2015)
Ruska, Y. et al. GLP-1 receptor signaling has different effects on the perikarya and axons of the hypophysiotropic thyrotropin-releasing hormone synthesizing neurons in male mice. Thyroid 34(2), 252–260 (2024). (PMID: 3806275410.1089/thy.2023.0284)
Anderson, C. R. & Edwards, S. L. Intraperitoneal injections of Fluorogold reliably labels all sympathetic preganglionic neurons in the rat. J. Neurosci. Methods 53(2), 137–141 (1994). (PMID: 782361610.1016/0165-0270(94)90170-8)
Alkaslasi, M. R. et al. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat. Commun. 12(1), 2471 (2021). (PMID: 33931636808780710.1038/s41467-021-22691-2)
Kennedy, H. S., Jones, C. 3rd. & Caplazi, P. Comparison of standard laminectomy with an optimized ejection method for the removal of spinal cords from rats and mice. J. Histotechnol. 36(3), 86–91 (2013). (PMID: 24039319377098310.1179/014788813X13756994210382)
Wittmann, G., Hrabovszky, E. & Lechan, R. M. Distinct glutamatergic and GABAergic subsets of hypothalamic pro-opiomelanocortin neurons revealed by in situ hybridization in male rats and mice. J. Comp. Neurol. 521(14), 3287–3302 (2013). (PMID: 23640796400389510.1002/cne.23350)
Liposits, Z., Setalo, G. & Flerko, B. Application of the silver-gold intensified 3,3’-diaminobenzidine chromogen to the light and electron microscopic detection of the luteinizing hormone-releasing hormone system of the rat brain. Neuroscience 13(2), 513–525 (1984). (PMID: 639292710.1016/0306-4522(84)90245-8)
Schildge, S., Bohrer, C., Beck, K. & Schachtrup, C. Isolation and culture of mouse cortical astrocytes. J. Vis. Exp. 71, e50079 (2013).
Xu, G. et al. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: Possible contribution to impaired incretin effects in diabetes. Diabetes 56(6), 1551–1558 (2007). (PMID: 1736098410.2337/db06-1033)
معلومات مُعتمدة: Nap 3.0; NAP2022-I-10/2022 Magyar Tudományos Akadémia
المشرفين على المادة: 0 (Glucagon-Like Peptide-1 Receptor)
89750-14-1 (Glucagon-Like Peptide 1)
55963-74-1 (Proglucagon)
0 (Glp1r protein, mouse)
تواريخ الأحداث: Date Created: 20240622 Date Completed: 20240622 Latest Revision: 20240711
رمز التحديث: 20240711
مُعرف محوري في PubMed: PMC11193760
DOI: 10.1038/s41598-024-65442-1
PMID: 38909126
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-65442-1