دورية أكاديمية

Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes.

التفاصيل البيبلوغرافية
العنوان: Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes.
المؤلفون: Phillip M; Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel., Achenbach P; Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.; Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany., Addala A; Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA., Albanese-O'Neill A; Breakthrough T1D, Gainesville, FL, USA. aaoneill@breakthrought1d.org., Battelino T; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.; Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia., Bell KJ; Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia., Besser REJ; JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.; Department of Paediatrics, University of Oxford, Oxford, UK., Bonifacio E; Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany.; Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of TU Dresden and Faculty of Medicine, Dresden, Germany., Colhoun HM; The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.; Department of Public Health, NHS Fife, Kirkcaldy, UK., Couper JJ; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.; Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.; Division of Paediatrics, Women's and Children's Hospital, Adelaide, SA, Australia., Craig ME; Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.; Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, NSW, Australia., Danne T; Breakthrough T1D, Lisbon, Portugal., de Beaufort C; International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany.; Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg.; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg., Dovc K; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.; Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia., Driscoll KA; Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.; Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA., Dutta S; Breakthrough T1D, New York, NY, USA., Ebekozien O; T1D Exchange, Boston, MA, USA., Larsson HE; Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.; Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden., Feiten DJ; Children's Diabetes Foundation, Aurora, CO, USA., Frohnert BI; Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA., Gabbay RA; American Diabetes Association, Arlington, VA, USA., Gallagher MP; NYU Langone Medical Center, New York, NY, USA., Greenbaum CJ; Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA., Griffin KJ; Sanford Research, Sioux Falls, SD, USA.; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA., Hagopian W; Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA, USA., Haller MJ; Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA.; Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA., Hendrieckx C; School of Psychology, Deakin University, Geelong, VIC, Australia.; The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, VIC, Australia.; Institute for Health Transformation, Deakin University, Geelong, VIC, Australia., Hendriks E; Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK., Holt RIG; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.; National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK., Hughes L; Mount Sinai South Nassau, Oceanside, NY, USA., Ismail HM; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA., Jacobsen LM; Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA., Johnson SB; Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA., Kolb LE; Association of Diabetes Care & Education Specialists, Chicago, IL, USA., Kordonouri O; Breakthrough T1D, Lisbon, Portugal., Lange K; Medical Psychology, Hannover Medical School, Hannover, Germany., Lash RW; Endocrine Society, Washington, DC, USA., Lernmark Å; Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden., Libman I; Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA., Lundgren M; Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.; Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden., Maahs DM; Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA., Marcovecchio ML; Department of Pediatrics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK., Mathieu C; Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium., Miller KM; T1D Exchange, Boston, MA, USA., O'Donnell HK; Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA., Oron T; Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel., Patil SP; Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA., Pop-Busui R; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA., Rewers MJ; Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA., Rich SS; Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA., Schatz DA; Department of Pediatrics, University of Florida, Gainesville, FL, USA., Schulman-Rosenbaum R; Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA., Simmons KM; Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA., Sims EK; Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA., Skyler JS; Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA., Smith LB; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA., Speake C; Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA., Steck AK; Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA., Thomas NPB; NIHR Clinical Research Network Thames Valley and South Midlands, Oxford, UK., Tonyushkina KN; Division of Endocrinology and Diabetes, Baystate Children's Hospital and University of Massachusetts Chan Medical School - Baystate, Springfield, MA, USA., Veijola R; Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland., Wentworth JM; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, VIC, Australia., Wherrett DK; Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada., Wood JR; Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA., Ziegler AG; Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.; Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany., DiMeglio LA; Mount Sinai South Nassau, Oceanside, NY, USA.
المصدر: Diabetologia [Diabetologia] 2024 Jun 24. Date of Electronic Publication: 2024 Jun 24.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0006777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0428 (Electronic) Linking ISSN: 0012186X NLM ISO Abbreviation: Diabetologia Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin Springer Verlag
مستخلص: Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb + ) children and adults who are at risk of (confirmed single IAb + ) or living with (multiple IAb + ) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb + ; (2) when people who are IAb + are initially identified there is a need for confirmation using a second sample; (3) single IAb + individuals are at lower risk of progression than multiple IAb + individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.
(© 2024. American Diabetes Association and European Association for the Study of Diabetes.)
References: Gorsuch AN, Spencer KM, Lister J et al (1981) Evidence for a long prediabetic period in type I (insulin-dependent) diabetes mellitus. Lancet 2(8260–61):1363–5. https://doi.org/10.1016/s0140-6736(81)92795-1.
Riley WJ, Atkinson MA, Schatz DA, Maclaren NK (1990) Comparison of islet autoantibodies in ‘pre-diabetes’ and recommendations for screening. J Autoimmun 3:47–51. https://doi.org/10.1016/S0896-8411(09)90009-9.
Hirsch JS (2023) FDA approves teplizumab: a milestone in type 1 diabetes. Lancet Diabetes Endocrinol 11(1):18. https://doi.org/10.1016/S2213-8587(22)00351-5. (PMID: 10.1016/S2213-8587(22)00351-536436528)
American Diabetes Association Professional Practice Committee (2024) 3. Prevention or delay of diabetes and associated comorbidities: standards of care in diabetes—2024. Diabetes Care 47(Supplement_1):S43–S51. https://doi.org/10.2337/dc24-S003. (PMID: 10.2337/dc24-S003)
TEDDY Study Group (2008) The Environmental Determinants of Diabetes in the Young (TEDDY) study. Ann N Y Acad Sci 1150:1–13. https://doi.org/10.1196/annals.1447.062. (PMID: 10.1196/annals.1447.0622886800)
Frohnert BI, Ide L, Dong F et al (2017) Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia 60(6):998–1006. https://doi.org/10.1007/s00125-017-4256-9. (PMID: 10.1007/s00125-017-4256-9283149465504909)
McQueen RB, Geno Rasmussen C, Waugh K et al (2020) Cost and cost-effectiveness of large-scale screening for type 1 diabetes in Colorado. Diabetes Care 43(7):1496–503. https://doi.org/10.2337/dc19-2003.
Hamman RF, Bell RA, Dabelea D et al (2014) The SEARCH for Diabetes in Youth study: rationale, findings, and future directions. Diabetes Care 37(12):3336–44. https://doi.org/10.2337/dc14-0574. (PMID: 10.2337/dc14-0574254143894237981)
Raab J, Haupt F, Scholz M et al (2016) Capillary blood islet autoantibody screening for identifying pre-type 1 diabetes in the general population: design and initial results of the Fr1da study. BMJ Open 6(5):e011144. https://doi.org/10.1136/bmjopen-2016-011144. (PMID: 10.1136/bmjopen-2016-011144271943204874167)
Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ (2018) Type 1 diabetes TrialNet: a multifaceted approach to bringing disease-modifying therapy to clinical use in type 1 diabetes. Diabetes Care 41(4):653–61. https://doi.org/10.2337/dc17-0806. (PMID: 10.2337/dc17-0806295594515860837)
Lamichhane S, Ahonen L, Dyrlund TS et al (2018) Dynamics of plasma lipidome in progression to islet autoimmunity and type 1 diabetes – Type 1 Diabetes Prediction and Prevention Study (DIPP). Sci Rep 8(1):10635. https://doi.org/10.1038/s41598-018-28907-8. (PMID: 10.1038/s41598-018-28907-8300065876045612)
Butty V, Campbell C, Mathis D, Benoist C, DPT-1 Study Group (2008) Impact of diabetes susceptibility loci on progression from pre-diabetes to diabetes in at-risk individuals of the Diabetes Prevention Trial-Type 1 (DPT-1). Diabetes 57(9):2348–59. https://doi.org/10.2337/db07-1736. (PMID: 10.2337/db07-1736185563372518486)
European Nicotinamide Diabetes Intervention Trial Group (2003) Intervening before the onset of Type 1 diabetes: baseline data from the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetologia 46(3):339–46. https://doi.org/10.1007/s00125-003-1033-8. (PMID: 10.1007/s00125-003-1033-8)
Dunger DB, Bruggraber SFA, Mander AP et al (2022) INNODIA Master Protocol for the evaluation of investigational medicinal products in children, adolescents and adults with newly diagnosed type 1 diabetes. Trials 23(1):414. https://doi.org/10.1186/s13063-022-06259-z. (PMID: 10.1186/s13063-022-06259-z355856009116021)
Ziegler AG, Hummel M, Schenker M, Bonifacio E (1999) Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48(3):460–8. https://doi.org/10.2337/diabetes.48.3.460. (PMID: 10.2337/diabetes.48.3.46010078544)
Besser REJ, Bell KJ, Couper JJ et al (2022) ISPAD clinical practice consensus guidelines 2022: stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 23(8):1175–87. https://doi.org/10.1111/pedi.13410. (PMID: 10.1111/pedi.1341036177823)
Insel RA, Dunne JL, Atkinson MA et al (2015) Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38(10):1964–74. https://doi.org/10.2337/dc15-1419. (PMID: 10.2337/dc15-1419264049265321245)
ElSayed NA, Aleppo G, Aroda VR et al (2023) 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 46(Supplement_1):S19–S40. https://doi.org/10.2337/dc23-S002. (PMID: 10.2337/dc23-S00236507649)
Blonde L, Umpierrez GE, Reddy SS et al (2022) American Association of Clinical Endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan—2022 update. Endocr Pract 28(10):923–1049. https://doi.org/10.1016/j.eprac.2022.08.002. (PMID: 10.1016/j.eprac.2022.08.0023596350810200071)
Insel RA, Dunne JL, Ziegler AG (2015) General population screening for type 1 diabetes: has its time come? Curr Opin Endocrinol Diabetes Obes 22(4):270–6. https://doi.org/10.1097/MED.0000000000000173.
Simmons KMW, Frohnert BI, O’Donnell HK et al (2023) Historical insights and current perspectives on the diagnosis and management of presymptomatic type 1 diabetes. Diabetes Technol Ther 25(11):790–9. https://doi.org/10.1089/dia.2023.0276. (PMID: 10.1089/dia.2023.027637695674)
Herold KC, Bundy BN, Long SA et al (2019) An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med 381(7):603–13. https://doi.org/10.1056/NEJMoa1902226. (PMID: 10.1056/NEJMoa1902226311801946776880)
Besser REJ, Ng SM, Gregory JW, Dayan CM, Randell T, Barrett T (2022) General population screening for childhood type 1 diabetes: is it time for a UK strategy? Arch Dis Child 107(9):790–5. https://doi.org/10.1136/archdischild-2021-321864. (PMID: 10.1136/archdischild-2021-32186434740879)
Ziegler AG, Kick K, Bonifacio E et al (2020) Yield of a public health screening of children for islet autoantibodies in Bavaria, Germany. JAMA 323(4):339–51. https://doi.org/10.1001/jama.2019.21565. (PMID: 10.1001/jama.2019.21565319903156990943)
American Diabetes Association Professional Practice Committee (2024) 2. Diagnosis and classification of diabetes: standards of care in diabetes—2024. Diabetes Care 47(Supplement_1):S20–S42. https://doi.org/10.2337/dc24-S002. (PMID: 10.2337/dc24-S002)
Elding Larsson H, Vehik K, Bell R et al (2011) Reduced prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes in young children participating in longitudinal follow-up. Diabetes Care 34(11):2347–52. https://doi.org/10.2337/dc11-1026.
Lundgren M, Sahlin Å, Svensson C et al (2014) Reduced morbidity at diagnosis and improved glycemic control in children previously enrolled in DiPiS follow-up. Pediatr Diabetes 15(7):494–501. https://doi.org/10.1111/pedi.12151. (PMID: 10.1111/pedi.12151248238164190091)
Wentworth JM, Oakey H, Craig ME et al (2022) Decreased occurrence of ketoacidosis and preservation of beta cell function in relatives screened and monitored for type 1 diabetes in Australia and New Zealand. Pediatr Diabetes 23(8):1594–601. https://doi.org/10.1111/pedi.13422. (PMID: 10.1111/pedi.13422361753929772160)
Hekkala AM, Ilonen J, Toppari J, Knip M, Veijola R (2018) Ketoacidosis at diagnosis of type 1 diabetes: effect of prospective studies with newborn genetic screening and follow up of risk children. Pediatr Diabetes 19(2):314–9. https://doi.org/10.1111/pedi.12541. (PMID: 10.1111/pedi.1254128544185)
Jacobsen LM, Vehik K, Veijola R et al (2022) Heterogeneity of DKA incidence and age-specific clinical characteristics in children diagnosed with type 1 diabetes in the TEDDY study. Diabetes Care 45(3):624–33. https://doi.org/10.2337/dc21-0422. (PMID: 10.2337/dc21-0422350431628918232)
Barker JM, Goehrig SH, Barriga K et al (2004) Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-Up. Diabetes Care 27(6):1399–404. https://doi.org/10.2337/diacare.27.6.1399. (PMID: 10.2337/diacare.27.6.139915161795)
Rewers A, Dong F, Slover RH, Klingensmith GJ, Rewers M (2015) Incidence of diabetic ketoacidosis at diagnosis of type 1 diabetes in Colorado youth, 1998–2012. JAMA 313(15):1570–2. https://doi.org/10.1001/jama.2015.1414. (PMID: 10.1001/jama.2015.141425898057)
Hummel S, Carl J, Friedl N et al (2023) Children diagnosed with presymptomatic type 1 diabetes through public health screening have milder diabetes at clinical manifestation. Diabetologia 66(9):1633–42. https://doi.org/10.1007/s00125-023-05953-0. (PMID: 10.1007/s00125-023-05953-03732945010390633)
Winkler C, Schober E, Ziegler A-G, Holl RW (2012) Markedly reduced rate of diabetic ketoacidosis at onset of type 1 diabetes in relatives screened for islet autoantibodies. Pediatr Diabetes 13(4):308–13. https://doi.org/10.1111/j.1399-5448.2011.00829.x.
Triolo TM, Chase HP, Barker JM, DPT-1 Study Group (2009) Diabetic subjects diagnosed through the Diabetes Prevention Trial-Type 1 (DPT-1) are often asymptomatic with normal A1C at diabetes onset. Diabetes Care 32(5):769–73. https://doi.org/10.2337/dc08-1872. (PMID: 10.2337/dc08-1872194070742671125)
Alonso GT, Coakley A, Pyle L, Manseau K, Thomas S, Rewers A (2020) Diabetic ketoacidosis at diagnosis of type 1 diabetes in Colorado children, 2010–2017. Diabetes Care 43(1):117–21. https://doi.org/10.2337/dc19-0428. (PMID: 10.2337/dc19-042831601639)
Praveen PA, Hockett CW, Ong TC et al (2021) Diabetic ketoacidosis at diagnosis among youth with type 1 and type 2 diabetes: Results from SEARCH (United States) and YDR (India) registries. Pediatr Diabetes 22(1):40–6. https://doi.org/10.1111/pedi.12979. (PMID: 10.1111/pedi.1297931943641)
Wersäll JH, Adolfsson P, Forsander G, Ricksten S-E, Hanas R (2021) Delayed referral is common even when new‐onset diabetes is suspected in children. A Swedish prospective observational study of diabetic ketoacidosis at onset of Type 1 diabetes. Pediatr Diabetes 22(6):900–8. https://doi.org/10.1111/pedi.13229.
Birkebaek NH, Kamrath C, Grimsmann JM et al (2022) Impact of the COVID-19 pandemic on long-term trends in the prevalence of diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes: an international multicentre study based on data from 13 national diabetes registries. Lancet Diabetes Endocrinol 10(11):786–94. https://doi.org/10.1016/S2213-8587(22)00246-7. (PMID: 10.1016/S2213-8587(22)00246-7362021189597608)
Saydah SH, Shrestha SS, Zhang P, Zhou X, Imperatore G (2019) Medical costs among youth younger than 20 years of age with and without diabetic ketoacidosis at the time of diabetes diagnosis. Diabetes Care 42(12):2256–61. https://doi.org/10.2337/dc19-1041. (PMID: 10.2337/dc19-104131575641)
Chang DW, Shapiro MF (2016) Association between intensive care unit utilization during hospitalization and costs, use of invasive procedures, and mortality. JAMA Intern Med 176(10):1492–9. https://doi.org/10.1001/jamainternmed.2016.4298. (PMID: 10.1001/jamainternmed.2016.429827532500)
Patel A, Singh D, Bhatt P, Thakkar B, Akingbola OA, Srivastav SK (2016) Incidence, trends, and outcomes of cerebral edema among children with diabetic ketoacidosis in the United States. Clin Pediatr 55(10):943–51. https://doi.org/10.1177/0009922815617975. (PMID: 10.1177/0009922815617975)
Duca LM, Reboussin BA, Pihoker C et al (2019) Diabetic ketoacidosis at diagnosis of type 1 diabetes and glycemic control over time: the SEARCH for diabetes in youth study. Pediatr Diabetes 20(2):172–9. https://doi.org/10.1111/pedi.12809. (PMID: 10.1111/pedi.1280930556249)
Clapin HF, Earnest A, Colman PG et al (2022) Diabetic ketoacidosis at onset of type 1 diabetes and long-term HbA1c in 7,961 children and young adults in the Australasian Diabetes Data Network. Diabetes Care 45(12):2918–25. https://doi.org/10.2337/dc22-0853. (PMID: 10.2337/dc22-085336749868)
Kelly L, Tuthill A (2023) Does diabetic ketoacidosis at diagnosis of type 1 diabetes mellitus predict poorer long-term glycemic control. Ir J Med Sci 192(4):1703–9. https://doi.org/10.1007/s11845-023-03345-2. (PMID: 10.1007/s11845-023-03345-237010775)
Giannakopoulos A, Chrysanthakopoulou N, Efthymiadou A, Chrysis D (2024) Diabetic ketosis vs ketoacidosis as initial presentation of pediatric type 1 diabetes mellitus. Associated features and rate of progression during the first two years after diagnosis. J Diabetes Complications 38(1):108667. https://doi.org/10.1016/j.jdiacomp.2023.108667. (PMID: 10.1016/j.jdiacomp.2023.10866738150983)
Karges B, Prinz N, Placzek K et al (2021) A comparison of familial and sporadic type 1 diabetes among young patients. Diabetes Care 44(5):1116–24. https://doi.org/10.2337/dc20-1829. (PMID: 10.2337/dc20-182933824143)
Bonifacio E, Achenbach P (2019) Birth and coming of age of islet autoantibodies. Clin Exp Immunol 198(3):294–305. https://doi.org/10.1111/cei.13360. (PMID: 10.1111/cei.13360313978896857083)
Vehik K, Bonifacio E, Lernmark Å et al (2020) Hierarchical order of distinct autoantibody spreading and progression to type 1 diabetes in the TEDDY study. Diabetes Care 43(9):2066–73. https://doi.org/10.2337/dc19-2547. (PMID: 10.2337/dc19-2547326413737440899)
Marzinotto I, Pittman DL, Williams AJK et al (2023) Islet autoantibody standardization program: interlaboratory comparison of insulin autoantibody assay performance in 2018 and 2020 workshops. Diabetologia 66(5):897–912. https://doi.org/10.1007/s00125-023-05877-9. (PMID: 10.1007/s00125-023-05877-93675934710036445)
Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309(23):2473–9. (PMID: 10.1001/jama.2013.6285237804604878912)
Frohnert BI, Ghalwash M, Li Y et al (2023) Refining the definition of stage 1 type 1 diabetes: an ontology-driven analysis of the heterogeneity of multiple islet autoimmunity. Diabetes Care 46(10):1753–61. https://doi.org/10.2337/dc22-1960. (PMID: 10.2337/dc22-196036862942)
Orban T, Sosenko JM, Cuthbertson D et al (2009) Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 32(12):2269–74. (PMID: 10.2337/dc09-0934197411892782989)
Steck AK, Vehik K, Bonifacio E et al (2015) Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care 38(5):808–13. (PMID: 10.2337/dc14-2426256658184407751)
Achenbach P, Warncke K, Reiter J et al (2004) Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53(2):384–92. (PMID: 10.2337/diabetes.53.2.38414747289)
Bosi E, Boulware DC, Becker DJ et al (2017) Impact of age and antibody type on progression from single to multiple autoantibodies in type 1 diabetes relatives. J Clin Endocrinol Metab 102(8):2881–6. https://doi.org/10.1210/jc.2017-00569. (PMID: 10.1210/jc.2017-00569285313055546870)
Morran MP, Casu A, Arena VC et al (2010) Humoral autoimmunity against the extracellular domain of the neuroendocrine autoantigen IA-2 heightens the risk of type 1 diabetes. Endocrinology 151(6):2528–37. https://doi.org/10.1210/en.2009-1257. (PMID: 10.1210/en.2009-1257203826962875834)
Ng K, Stavropoulos H, Anand V et al (2022) Islet autoantibody type-specific titer thresholds improve stratification of risk of progression to type 1 diabetes in children. Diabetes Care 45(1):160–8. https://doi.org/10.2337/dc21-0878. (PMID: 10.2337/dc21-087834758977)
Wherrett DK, Chiang JL, Delamater AM et al (2015) Defining pathways for development of disease-modifying therapies in children with type 1 diabetes: a consensus report. Diabetes Care 38(10):1975–85. https://doi.org/10.2337/dc15-1429. (PMID: 10.2337/dc15-1429264049274876737)
Muñoz C, Floreen A, Garey C et al (2019) Misdiagnosis and diabetic ketoacidosis at diagnosis of type 1 diabetes: patient and caregiver perspectives. Clin Diabetes 37(3):276–81. https://doi.org/10.2337/cd18-0088. (PMID: 10.2337/cd18-0088313718596640891)
Lawrence JM, Slezak JM, Quesenberry C et al (2021) Incidence and predictors of type 1 diabetes among younger adults aged 20–45 years: the Diabetes in Young Adults (DiYA) study. Diabetes Res Clin Pract 171:108624. https://doi.org/10.1016/j.diabres.2020.108624. (PMID: 10.1016/j.diabres.2020.10862433338552)
Jones AG, McDonald TJ, Shields BM, Hagopian W, Hattersley AT (2021) Latent autoimmune diabetes of adults (LADA) is likely to represent a mixed population of autoimmune (type 1) and nonautoimmune (type 2) diabetes. Diabetes Care 44(6):1243–51. https://doi.org/10.2337/dc20-2834. (PMID: 10.2337/dc20-2834340166078247509)
Holt RIG, DeVries JH, Hess-Fischl A et al (2021) The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 64(12):2609–52. https://doi.org/10.1007/s00125-021-05568-3. (PMID: 10.1007/s00125-021-05568-3345901748481000)
Libman IM, Pietropaolo M, Arslanian SA, LaPorte RE, Becker DJ (2003) Changing prevalence of overweight children and adolescents at onset of insulin-treated diabetes. Diabetes Care 26(10):2871–5. https://doi.org/10.2337/diacare.26.10.2871. (PMID: 10.2337/diacare.26.10.287114514594)
Kavvoura FK, Owen KR (2012) Maturity onset diabetes of the young: clinical characteristics, diagnosis and management. Pediatr Endocrinol Rev 10(2):234–42. (PMID: 23539835)
Vehik K, Boulware D, Killian M et al (2022) Rising hemoglobin A1c in the nondiabetic range predicts progression of type 1 diabetes as well as oral glucose tolerance tests. Diabetes Care 45(10):2342–9. https://doi.org/10.2337/dc22-0828. (PMID: 10.2337/dc22-0828361500549587339)
Helminen O, Aspholm S, Pokka T et al (2015) HbA1c predicts time to diagnosis of type 1 diabetes in children at risk. Diabetes 64(5):1719–27. https://doi.org/10.2337/db14-0497. (PMID: 10.2337/db14-049725524912)
Ismail HM, Becker DJ, Libman I et al (2020) Early and late C-peptide responses during oral glucose tolerance testing are oppositely predictive of type 1 diabetes in autoantibody-positive individuals. Diabetes Obes Metab 22(6):997–1000. https://doi.org/10.1111/dom.13982. (PMID: 10.1111/dom.13982320031107341484)
Greenbaum CJ, Anderson AM, Dolan LM et al (2009) Preservation of β-cell function in autoantibody-positive youth with diabetes. Diabetes Care 32(10):1839–44. https://doi.org/10.2337/dc08-2326. (PMID: 10.2337/dc08-2326195873652752937)
Hao W, Gitelman S, DiMeglio LA, Boulware D, Greenbaum CJ (2016) Fall in C-peptide during first 4 years from diagnosis of type 1 diabetes: variable relation to age, HbA1c, and insulin dose. Diabetes Care 39:1664–70. https://doi.org/10.2337/dc16-0360. (PMID: 10.2337/dc16-0360274225775033079)
Wilson DM, Pietropaolo SL, Acevedo-Calado M et al (2023) CGM metrics identify dysglycemic states in participants from the TrialNet Pathway to Prevention study. Diabetes Care 46(3):526–34. https://doi.org/10.2337/dc22-1297. (PMID: 10.2337/dc22-12973673053010020029)
Steck AK, Dong F, Geno Rasmussen C et al (2022) CGM metrics predict imminent progression to type 1 diabetes: Autoimmunity Screening for Kids (ASK) study. Diabetes Care 45(2):365–71. https://doi.org/10.2337/dc21-0602.
Kontola H, Alanko I, Koskenniemi JJ et al (2022) Exploring minimally invasive approach to define stages of type 1 diabetes remotely. Diabetes Technol Ther 24(9):655–65. https://doi.org/10.1089/dia.2021.0554. (PMID: 10.1089/dia.2021.055435653748)
Ylescupidez A, Speake C, Pietropaolo SL et al (2023) OGTT metrics surpass continuous glucose monitoring data for T1D prediction in multiple-autoantibody–positive individuals. J Clin Endocrinol Metab 109(1):57–67. https://doi.org/10.1210/clinem/dgad472. (PMID: 10.1210/clinem/dgad47237572381)
ElSayed NA, Aleppo G, Aroda VR et al (2023) Introduction and methodology: standards of care in diabetes—2023. Diabetes Care 46(Supplement_1):S1–S4. https://doi.org/10.2337/dc23-Sint. (PMID: 10.2337/dc23-Sint36507647)
Driscoll KA, Tamura R, Johnson SB et al (2021) Adherence to oral glucose tolerance testing in children in stage 1 of type 1 diabetes: the TEDDY study. Pediatr Diabetes 22(2):360–8. https://doi.org/10.1111/pedi.13149. (PMID: 10.1111/pedi.13149331798537913602)
Steck AK, Dong F, Taki I et al (2019) Continuous glucose monitoring predicts progression to diabetes in autoantibody positive children. J Clin Endocrinol Metab 104(8):3337–44. https://doi.org/10.1210/jc.2018-02196. (PMID: 10.1210/jc.2018-02196308440736589073)
Montaser E, Brown SA, DeBoer MD, Farhy LS (2024) Predicting the risk of developing type 1 diabetes using a one-week continuous glucose monitoring home test with classification enhanced by machine-learning: an exploratory study. J Diabetes Sci Technol 18(2):257–65. https://doi.org/10.1177/19322968231209302. (PMID: 10.1177/1932296823120930237946401)
Montaser E, Breton MD, Brown SA, DeBoer MD, Kovatchev B, Farhy LS (2023) Predicting immunological risk for stage 1 and stage 2 diabetes using a 1-week CGM home test, nocturnal glucose increments, and standardized liquid mixed meal breakfasts, with classification enhanced by machine learning. Diabetes Technol Ther 25(9):631–42. https://doi.org/10.1089/dia.2023.0064. (PMID: 10.1089/dia.2023.006437184602)
O’Rourke C, Ylescupidez A, Bahnson HT et al (2023) Risk modeling to reduce monitoring of an autoantibody-positive population to prevent DKA at type 1 diabetes diagnosis. J Clin Endocrinol Metab 108(3):688–96. https://doi.org/10.1210/clinem/dgac594. (PMID: 10.1210/clinem/dgac59436227635)
Sims EK, Geyer S, Johnson SB et al (2019) Who is enrolling? The path to monitoring in type 1 diabetes TrialNet’s Pathway to Prevention. Diabetes Care 42(12):2228–36. https://doi.org/10.2337/dc19-0593. (PMID: 10.2337/dc19-0593315585466868467)
Kimpimäki T, Kulmala P, Savola K et al (2002) Natural history of β-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 87(10):4572–9. https://doi.org/10.1210/jc.2002-020018. (PMID: 10.1210/jc.2002-02001812364437)
Vehik K, Lynch KF, Schatz DA et al (2016) Reversion of β-cell autoimmunity changes risk of type 1 diabetes: TEDDY study. Diabetes Care 39(9):1535–42. https://doi.org/10.2337/dc16-0181. (PMID: 10.2337/dc16-0181273114905001144)
Krischer JP, Liu X, Lernmark Å et al (2022) Predictors of the initiation of islet autoimmunity and progression to multiple autoantibodies and clinical diabetes: the TEDDY study. Diabetes Care 45(10):2271–81. https://doi.org/10.2337/dc21-2612. (PMID: 10.2337/dc21-2612361500539643148)
Chmiel R, Giannopoulou EZ, Winkler C, Achenbach P, Ziegler AG, Bonifacio E (2015) Progression from single to multiple islet autoantibodies often occurs soon after seroconversion: implications for early screening. Diabetologia 58(2):411–3. https://doi.org/10.1007/s00125-014-3443-1. (PMID: 10.1007/s00125-014-3443-125409656)
So M, O’Rourke C, Ylescupidez A et al (2022) Characterising the age-dependent effects of risk factors on type 1 diabetes progression. Diabetologia 65(4):684–94. https://doi.org/10.1007/s00125-021-05647-5. (PMID: 10.1007/s00125-021-05647-5350410219928893)
Anand V, Li Y, Liu B et al (2021) Islet autoimmunity and HLA markers of presymptomatic and clinical type 1 diabetes: joint analyses of prospective cohort studies in Finland, Germany, Sweden, and the U.S. Diabetes Care 44(10):2269–76. https://doi.org/10.2337/dc20-1836. (PMID: 10.2337/dc20-1836341626658929180)
Bonifacio E, Weiß A, Winkler C et al (2021) An age-related exponential decline in the risk of multiple islet autoantibody seroconversion during childhood. Diabetes Care 44(10):2260–8. https://doi.org/10.2337/dc20-2122. (PMID: 10.2337/dc20-2122336273668929192)
Bonifacio E (2015) Predicting type 1 diabetes using biomarkers. Diabetes Care 38(6):989–96. https://doi.org/10.2337/dc15-0101. (PMID: 10.2337/dc15-010125998291)
Bingley PJ, Boulware DC, Krischer JP, Type 1 Diabetes TrialNet Study Group (2016) The implications of autoantibodies to a single islet antigen in relatives with normal glucose tolerance: development of other autoantibodies and progression to type 1 diabetes. Diabetologia 59(3):542–9. https://doi.org/10.1007/s00125-015-3830-2. (PMID: 10.1007/s00125-015-3830-226676824)
Schneider J, Gemulla G, Kiess W, Berner R, Hommel A (2023) Presymptomatic type 1 diabetes and disease severity at onset. Diabetologia 66(12):2387–8. https://doi.org/10.1007/s00125-023-05999-0. (PMID: 10.1007/s00125-023-05999-03775089210628005)
Hummel S, Friedl N, Winkler C, Ziegler AG, Achenbach P (2023) Presymptomatic type 1 diabetes and disease severity at onset. Reply to Schneider J, Gemulla G, Kiess W et al [letter]. Diabetologia 66(12):2389–90. https://doi.org/10.1007/s00125-023-06017-z. (PMID: 10.1007/s00125-023-06017-z3772334610627885)
Ghalwash M, Dunne JL, Lundgren M et al (2022) Two-age islet-autoantibody screening for childhood type 1 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol 10(8):589–96. https://doi.org/10.1016/S2213-8587(22)00141-3. (PMID: 10.1016/S2213-8587(22)00141-33580329610040253)
Weiss A, Zapardiel-Gonzalo J, Voss F et al (2022) Progression likelihood score identifies substages of presymptomatic type 1 diabetes in childhood public health screening. Diabetologia 65(12):2121–31. https://doi.org/10.1007/s00125-022-05780-9. (PMID: 10.1007/s00125-022-05780-9360287749630406)
So M, O’Rourke C, Bahnson HT, Greenbaum CJ, Speake C (2020) Autoantibody reversion: changing risk categories in multiple-autoantibody–positive individuals. Diabetes Care 43(4):913–7. https://doi.org/10.2337/dc19-1731. (PMID: 10.2337/dc19-1731320198567085807)
Helminen O, Aspholm S, Pokka T et al (2015) OGTT and random plasma glucose in the prediction of type 1 diabetes and time to diagnosis. Diabetologia 58(8):1787–96. https://doi.org/10.1007/s00125-015-3621-9. (PMID: 10.1007/s00125-015-3621-925985749)
Herold KC, Gitelman SE, Gottlieb PA, Knecht LA, Raymond R, Ramos EL (2023) Teplizumab: a disease-modifying therapy for type 1 diabetes that preserves β-cell function. Diabetes Care 46(10):1848–56. https://doi.org/10.2337/dc23-0675. (PMID: 10.2337/dc23-06753760739210545553)
Thunander M, Petersson C, Jonzon K et al (2008) Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabetes Res Clin Pract 82(2):247–55. https://doi.org/10.1016/j.diabres.2008.07.022. (PMID: 10.1016/j.diabres.2008.07.02218804305)
Rogers MAM, Kim C, Banerjee T, Lee JM (2017) Fluctuations in the incidence of type 1 diabetes in the United States from 2001 to 2015: a longitudinal study. BMC Med 15(1):199. https://doi.org/10.1186/s12916-017-0958-6. (PMID: 10.1186/s12916-017-0958-6291159475688827)
Weng J, Zhou Z, Guo L et al (2018) Incidence of type 1 diabetes in China, 2010–13: population based study. BMJ 360:j5295. https://doi.org/10.1136/bmj.j5295. (PMID: 10.1136/bmj.j5295292987765750780)
Diaz-Valencia PA, Bougnères P, Valleron AJ (2015) Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health 15:255. https://doi.org/10.1186/s12889-015-1591-y. (PMID: 10.1186/s12889-015-1591-y258495664381393)
Thomas NJ, Hill AV, Dayan CM et al (2023) Age of diagnosis does not alter the presentation or progression of robustly defined adult-onset type 1 diabetes. Diabetes Care 46(6):1156–63. https://doi.org/10.2337/dc22-2159. (PMID: 10.2337/dc22-215936802355)
Gregory GA, Robinson TIG, Linklater SE et al (2022) Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol 10(10):741–60. https://doi.org/10.1016/S2213-8587(22)00218-2. (PMID: 10.1016/S2213-8587(22)00218-236113507)
Hawa MI, Kolb H, Schloot N et al (2013) Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA-7. Diabetes Care 36(4):908–13. https://doi.org/10.2337/dc12-0931.
Xiang Y, Huang G, Zhu Y et al (2019) Identification of autoimmune type 1 diabetes and multiple organ-specific autoantibodies in adult-onset non-insulin-requiring diabetes in China: a population-based multicentre nationwide survey. Diabetes Obes Metab 21(4):893–902. https://doi.org/10.1111/dom.13595. (PMID: 10.1111/dom.1359530471182)
Rolandsson O, Hampe CS, Sharp SJ et al (2020) Autoimmunity plays a role in the onset of diabetes after 40 years of age. Diabetologia 63(2):266–77. https://doi.org/10.1007/s00125-019-05016-3. (PMID: 10.1007/s00125-019-05016-331713011)
Yasui J, Kawasaki E, Tanaka S et al (2016) Clinical and genetic characteristics of non-insulin-requiring glutamic acid decarboxylase (GAD) autoantibody-positive diabetes: a nationwide survey in Japan. PLoS One 11(5):e0155643. https://doi.org/10.1371/journal.pone.0155643. (PMID: 10.1371/journal.pone.0155643271770314866691)
Hanna SJ, Powell WE, Long AE et al (2020) Slow progressors to type 1 diabetes lose islet autoantibodies over time, have few islet antigen-specific CD8+ T cells and exhibit a distinct CD95hi B cell phenotype. Diabetologia 63(6):1174–85. https://doi.org/10.1007/s00125-020-05114-7. (PMID: 10.1007/s00125-020-05114-7321573327228996)
Brooks-Worrell B, Hampe CS, Hattery EG et al (2022) Islet autoimmunity is highly prevalent and associated with diminished β-cell function in patients with type 2 diabetes in the GRADE study. Diabetes 71(6):1261–71. https://doi.org/10.2337/db21-0590. (PMID: 10.2337/db21-0590350610249375448)
Greenbaum CJ, Beam CA, Boulware D et al (2012) Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes 61(8):2066–73. https://doi.org/10.2337/db11-1538.
American Diabetes Association (2004) Screening for type 2 diabetes. Diabetes Care 27(suppl_1):s11–s4. https://doi.org/10.2337/diacare.27.2007.S11. (PMID: 10.2337/diacare.27.2007.S11)
US Preventive Services Task Force (2021) Prediabetes and type 2 diabetes: screening. Available from: www.uspreventiveservicestaskforce.org/uspstf/recommendation/screening-for-prediabetes-and-type-2-diabetes . Accessed: 3 May 2024.
Iqbal S, Jayyab AA, Alrashdi AM, Reverté-Villarroya S (2023) The predictive ability of C-peptide in distinguishing type 1 diabetes from type 2 diabetes: a systematic review and meta-analysis. Endocr Pract 29(5):379–87. https://doi.org/10.1016/j.eprac.2023.01.004. (PMID: 10.1016/j.eprac.2023.01.00436641115)
Löbner K, Knopff A, Baumgarten A et al (2006) Predictors of postpartum diabetes in women with gestational diabetes mellitus. Diabetes 55(3):792–7. https://doi.org/10.2337/diabetes.55.03.06.db05-0746. (PMID: 10.2337/diabetes.55.03.06.db05-074616505245)
Dirar AM, Doupis J (2017) Gestational diabetes from A to Z. World J Diabetes 8(12):489–511. https://doi.org/10.4239/wjd.v8.i12.489. (PMID: 10.4239/wjd.v8.i12.489)
Murphy HR, Howgate C, O’Keefe J et al (2021) Characteristics and outcomes of pregnant women with type 1 or type 2 diabetes: a 5-year national population-based cohort study. Lancet Diabetes Endocrinol 9(3):153–64. https://doi.org/10.1016/S2213-8587(20)30406-X. (PMID: 10.1016/S2213-8587(20)30406-X33516295)
Evers IM, de Valk HW, Visser GHA (2004) Risk of complications of pregnancy in women with type 1 diabetes: nationwide prospective study in the Netherlands. BMJ 328(7445):915. https://doi.org/10.1136/bmj.38043.583160.EE. (PMID: 10.1136/bmj.38043.583160.EE15066886390158)
Simmons D, Immanuel J, Hague WM et al (2023) Treatment of gestational diabetes mellitus diagnosed early in pregnancy. New Engl J Med 388(23):2132–44. https://doi.org/10.1056/NEJMoa2214956. (PMID: 10.1056/NEJMoa221495637144983)
Davis J, Fischl AH, Beck J et al (2022) 2022 National standards for diabetes self-management education and support. Diabetes Care 45(2):484–94. https://doi.org/10.2337/dc21-2396. (PMID: 10.2337/dc21-239635050365)
Smith LB, Liu X, Johnson SB et al (2018) Family adjustment to diabetes diagnosis in children: can participation in a study on type 1 diabetes genetic risk be helpful? Pediatr Diabetes 19(5):1025–33. https://doi.org/10.1111/pedi.12674. (PMID: 10.1111/pedi.12674295775386030424)
Vanelli M, Chiari G, Ghizzoni L, Costi G, Giacalone T, Chiarelli F (1999) Effectiveness of a prevention program for diabetic ketoacidosis in children. An 8-year study in schools and private practices. Diabetes Care 22(1):7–9. https://doi.org/10.2337/diacare.22.1.7. (PMID: 10.2337/diacare.22.1.710333896)
Patwardhan R, Gorton S, Vangaveti VN, Yates J (2018) Diabetic ketoacidosis incidence in children at first presentation of type 1 diabetes at an Australian regional hospital: the effect of health professional education. Pediatr Diabetes 19(5):993–9. https://doi.org/10.1111/pedi.12666. (PMID: 10.1111/pedi.1266629484782)
Fritsch M, Schober E, Rami-Merhar B et al (2013) Diabetic ketoacidosis at diagnosis in Austrian children: a population-based analysis, 1989–2011. J Pediatr 163(5):1484–8.e1. https://doi.org/10.1016/j.jpeds.2013.06.033. (PMID: 10.1016/j.jpeds.2013.06.03323953724)
Rabbone I, Maltoni G, Tinti D et al (2020) Diabetic ketoacidosis at the onset of disease during a national awareness campaign: a 2-year observational study in children aged 0–18 years. Arch Dis Child 105(4):363–6. https://doi.org/10.1136/archdischild-2019-316903. (PMID: 10.1136/archdischild-2019-31690331597646)
Association of Diabetes Care and Education Specialists, Kolb L (2021) An effective model of diabetes care and education: the ADCES7 self-care behaviors. Sci Diabetes Self Manag Care 47(1):30–53. https://doi.org/10.1177/0145721720978154. (PMID: 10.1177/0145721720978154)
Baughcum AE, Johnson SB, Carmichael SK, Lewin AB, She JX, Schatz DA (2005) Maternal efforts to prevent type 1 diabetes in at-risk children. Diabetes Care 28(4):916–21. https://doi.org/10.2337/diacare.28.4.916. (PMID: 10.2337/diacare.28.4.91615793195)
Bakhach M, Reid MW, Pyatak EA et al (2019) Home telemedicine (CoYoT1 Clinic): a novel approach to improve psychosocial outcomes in young adults with diabetes. Diabetes Educ 45(4):420–30. https://doi.org/10.1177/0145721719858080. (PMID: 10.1177/014572171985808031244396)
Fernandes BSM, Reis IA, Torres HdC (2016) Evaluation of the telephone intervention in the promotion of diabetes self-care: a randomized clinical trial. Rev Lat Am Enfermagem 24:e2719. https://doi.org/10.1590/1518-8345.0632.2719.
von Storch K, Graaf E, Wunderlich M, Rietz C, Polidori MC, Woopen C (2019) Telemedicine-assisted self-management program for type 2 diabetes patients. Diabetes Technol Ther 21(9):514–21. https://doi.org/10.1089/dia.2019.0056. (PMID: 10.1089/dia.2019.0056)
Toma T, Athanasiou T, Harling L, Darzi A, Ashrafian H (2014) Online social networking services in the management of patients with diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. Diabetes Res Clin Pract 106(2):200–11. https://doi.org/10.1016/j.diabres.2014.06.008. (PMID: 10.1016/j.diabres.2014.06.00825043399)
Saffari M, Ghanizadeh G, Koenig HG (2014) Health education via mobile text messaging for glycemic control in adults with type 2 diabetes: a systematic review and meta-analysis. Prim Care Diabetes 8(4):275–85. https://doi.org/10.1016/j.pcd.2014.03.004. (PMID: 10.1016/j.pcd.2014.03.00424793589)
Johnson SB, Lynch KF, Roth R, Schatz D, TEDDY Study Group (2017) My child is islet autoantibody positive: impact on parental anxiety. Diabetes Care 40(9):1167–72. https://doi.org/10.2337/dc17-0166. (PMID: 10.2337/dc17-0166286633835566282)
Bonifacio E, Beyerlein A, Hippich M et al (2018) Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: a prospective study in children. PLoS Med 15(4):e1002548. https://doi.org/10.1371/journal.pmed.1002548. (PMID: 10.1371/journal.pmed.1002548296140815882115)
Sharp SA, Rich SS, Wood AR et al (2019) Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care 42(2):200–7. https://doi.org/10.2337/dc18-1785. (PMID: 10.2337/dc18-1785306553796341291)
Bennett Johnson S, Tercyak KP (1995) Psychological impact of islet cell antibody screening for IDDM on children, adults, and their family members. Diabetes Care 18(10):1370–2. https://doi.org/10.2337/diacare.18.10.1370.
Johnson SB (2011) Psychological impact of screening and prediction in type 1 diabetes. Curr Diab Rep 11(5):454–9. https://doi.org/10.1007/s11892-011-0208-9. (PMID: 10.1007/s11892-011-0208-921710195)
Swartling U, Lynch K, Smith L, Johnson SB, TEDDY Study Group (2016) Parental estimation of their child’s increased type 1 diabetes risk during the first 2 years of participation in an international observational study. J Empir Res Hum Res Ethics 11(2):106–14. https://doi.org/10.1177/1556264616648589. (PMID: 10.1177/1556264616648589272418734917467)
Liu X, Johnson SB, Lynch KF et al (2023) Physical activity and the development of islet autoimmunity and type 1 diabetes in 5- to 15-year-old children followed in the TEDDY study. Diabetes Care 46(7):1409–16. https://doi.org/10.2337/dc23-0036. (PMID: 10.2337/dc23-003637141102)
Lamb MM, Yin X, Barriga K et al (2008) Dietary glycemic index, development of islet autoimmunity, and subsequent progression to type 1 diabetes in young children. J Clin Endocrinol Metab 93(10):3936–42. https://doi.org/10.1210/jc.2008-0886. (PMID: 10.1210/jc.2008-0886186825142579644)
Lamb MM, Frederiksen B, Seifert JA, Kroehl M, Rewers M, Norris JM (2015) Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Diabetologia 58(9):2027–34. https://doi.org/10.1007/s00125-015-3657-x. (PMID: 10.1007/s00125-015-3657-x260482374529377)
Smith LB, Lynch KF, Driscoll KA, Johnson SB, TEDDY Study Group (2021) Parental monitoring for type 1 diabetes in genetically at-risk young children: the TEDDY study. Pediatr Diabetes 22(5):717–28. https://doi.org/10.1111/pedi.13173. (PMID: 10.1111/pedi.13173337048918771863)
Smith LB, Lynch KF, Baxter J et al (2014) Factors associated with maternal-reported actions to prevent type 1 diabetes in the first year of the TEDDY study. Diabetes Care 37(2):325–31. https://doi.org/10.2337/dc13-0449. (PMID: 10.2337/dc13-0449240416843898752)
Tluczek A, Ersig AL, Lee S (2022) Psychosocial issues related to newborn screening: a systematic review and synthesis. Int J Neonatal Screen 8(4):53. https://doi.org/10.3390/ijns8040053. (PMID: 10.3390/ijns8040053362786239589938)
Roth R, Lynch K, Lernmark B et al (2015) Maternal anxiety about a child’s diabetes risk in the TEDDY study: the potential role of life stress, postpartum depression, and risk perception. Pediatr Diabetes 16(4):287–98. https://doi.org/10.1111/pedi.12168. (PMID: 10.1111/pedi.1216825082392)
O’Donnell HK, Rasmussen CG, Dong F et al (2023) Anxiety and risk perception in parents of children identified by population screening as high risk for type 1 diabetes. Diabetes Care 46(12):2155–61. https://doi.org/10.2337/dc23-0350. (PMID: 10.2337/dc23-035037673098)
ElSayed NA, Aleppo G, Aroda VR et al (2023) 5. Facilitating positive health behaviors and well-being to improve health outcomes: standards of care in diabetes—2023. Diabetes Care 46(Supplement_1):S68–S96. https://doi.org/10.2337/dc23-S005. (PMID: 10.2337/dc23-S00536507648)
Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M (2016) Psychosocial care for people with diabetes: a position statement of the American Diabetes Association. Diabetes Care 39(12):2126–40. https://doi.org/10.2337/dc16-2053. (PMID: 10.2337/dc16-2053278793585127231)
Wit M, Gajewska KA, Goethals ER et al (2022) ISPAD clinical practice consensus guidelines 2022: psychological care of children, adolescents and young adults with diabetes. Pediatr Diabetes 23(8):1373–89. https://doi.org/10.1111/pedi.13428. (PMID: 10.1111/pedi.134283646498810107478)
Johnson SB, Smith LB (2023) General population screening for islet autoantibodies: psychosocial challenges. Diabetes Care 46(12):2123–5. https://doi.org/10.2337/dci23-0061. (PMID: 10.2337/dci23-006138011529)
van Steenbergen-Weijenburg KM, de Vroege L, Ploeger RR et al (2010) Validation of the PHQ-9 as a screening instrument for depression in diabetes patients in specialized outpatient clinics. BMC Health Serv Res 10:235. https://doi.org/10.1186/1472-6963-10-235. (PMID: 10.1186/1472-6963-10-235207047202927590)
Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32(1):50–5. https://doi.org/10.1111/j.2044-8341.1959.tb00467.x. (PMID: 10.1111/j.2044-8341.1959.tb00467.x13638508)
Driscoll KA, Melin J, Lynch KF, Smith LB, Johnson SB (2023) SAI-CH-6: development of a short form of the state anxiety inventory for children at-risk for type 1 diabetes. J Pediatr Psychol 48(10):861–9. https://doi.org/10.1093/jpepsy/jsad057. (PMID: 10.1093/jpepsy/jsad05737698990)
American Diabetes Association. Diabetes Pro. Mental Health Directory. Available from: https://my.diabetes.org/health-directory . Accessed: 3 May 2024.
Chobot A, Eckert AJ, Biester T et al (2023) Psychological care for children and adolescents with diabetes and patient outcomes: results from the international pediatric registry SWEET. Pediatr Diabetes. https://doi.org/10.1155/2023/8578231.
Sims EK, Besser REJ, Dayan C et al (2022) Screening for type 1 diabetes in the general population: a status report and perspective. Diabetes 71(4):610–23. https://doi.org/10.2337/dbi20-0054. (PMID: 10.2337/dbi20-0054353168399114719)
Hummel S, Ziegler AG (2011) Early determinants of type 1 diabetes: experience from the BABYDIAB and BABYDIET studies. Am J Clin Nutr 94(6 Suppl):S1821–S1823. https://doi.org/10.3945/ajcn.110.000646. (PMID: 10.3945/ajcn.110.000646)
Krischer JP, Lynch KF, Schatz DA et al (2015) The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58(5):980–7. https://doi.org/10.1007/s00125-015-3514-y. (PMID: 10.1007/s00125-015-3514-y256602584393776)
Ilonen J, Hammais A, Laine AP et al (2013) Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 62(10):3636–40. https://doi.org/10.2337/db13-0300. (PMID: 10.2337/db13-0300238353253781470)
Ziegler AG, Bonifacio E, BABYDIAB-BABYDIET Study Group (2012) Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia 55(7):1937–43. https://doi.org/10.1007/s00125-012-2472-x. (PMID: 10.1007/s00125-012-2472-x22289814)
Lernmark Å, Akolkar B, Hagopian W et al (2023) Possible heterogeneity of initial pancreatic islet beta-cell autoimmunity heralding type 1 diabetes. J Intern Med 294(2):145–58. https://doi.org/10.1111/joim.13648. (PMID: 10.1111/joim.1364837143363)
Leslie RD, Evans-Molina C, Freund-Brown J et al (2021) Adult-onset type 1 diabetes: current understanding and challenges. Diabetes Care 44(11):2449–56. https://doi.org/10.2337/dc21-0770. (PMID: 10.2337/dc21-0770346707858546280)
Ziegler AG, Bonifacio E (2020) Why is the presence of autoantibodies against GAD associated with a relatively slow progression to clinical diabetes? Diabetologia 63(8):1665–6. https://doi.org/10.1007/s00125-020-05175-8. (PMID: 10.1007/s00125-020-05175-8324515717351841)
Decochez K, De Leeuw IH, Keymeulen B et al (2002) IA-2 autoantibodies predict impending type I diabetes in siblings of patients. Diabetologia 45(12):1658–66. https://doi.org/10.1007/s00125-002-0949-8.
Achenbach P, Lampasona V, Landherr U et al (2009) Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia 52(9):1881–8. https://doi.org/10.1007/s00125-009-1438-0. (PMID: 10.1007/s00125-009-1438-019590848)
Bediaga NG, Li-Wai-Suen CSN, Haller MJ et al (2021) Simplifying prediction of disease progression in pre-symptomatic type 1 diabetes using a single blood sample. Diabetologia 64(11):2432–44. https://doi.org/10.1007/s00125-021-05523-2. (PMID: 10.1007/s00125-021-05523-2343388068494707)
Simmons KM, Sosenko JM, Warnock M et al (2020) One-hour oral glucose tolerance tests for the prediction and diagnostic surveillance of type 1 diabetes. J Clin Endocrinol Metab 105(11):e4094–e4101. https://doi.org/10.1210/clinem/dgaa592. (PMID: 10.1210/clinem/dgaa592328441787514797)
Sosenko JM, Skyler JS, DiMeglio LA et al (2015) A new approach for diagnosing type 1 diabetes in autoantibody-positive individuals based on prediction and natural history. Diabetes Care 38(2):271–6. https://doi.org/10.2337/dc14-1813. (PMID: 10.2337/dc14-181325519451)
Sosenko JM, Skyler JS, Mahon J et al (2014) Use of the Diabetes Prevention Trial-Type 1 risk score (DPTRS) for improving the accuracy of the risk classification of type 1 diabetes. Diabetes Care 37(4):979–84. https://doi.org/10.2337/dc13-2359. (PMID: 10.2337/dc13-2359245502173964487)
Sosenko JM, Skyler JS, Palmer JP, Diabetes Type 1 TrialNet and Diabetes Prevention Trial-Type 1 Study Groups (2015) The development, validation, and utility of the Diabetes Prevention Trial-Type 1 risk score (DPTRS). Curr Diab Rep 15(8):49. https://doi.org/10.1007/s11892-015-0626-1. (PMID: 10.1007/s11892-015-0626-126077017)
Helminen O, Pokka T, Tossavainen P, Ilonen J, Knip M, Veijola R (2016) Continuous glucose monitoring and HbA1c in the evaluation of glucose metabolism in children at high risk for type 1 diabetes mellitus. Diabetes Res Clin Pract 120:89–96. https://doi.org/10.1016/j.diabres.2016.07.027. (PMID: 10.1016/j.diabres.2016.07.02727525364)
Raghinaru D, Calhoun P, Bergenstal RM, Beck RW (2022) the optimal duration of a run-in period to initiate continuous glucose monitoring for a randomized trial. Diabetes Technology Ther 24(12):868–72. https://doi.org/10.1089/dia.2022.0274. (PMID: 10.1089/dia.2022.0274)
فهرسة مساهمة: Keywords: Autoantibodies; Glucose monitoring; Prevention; Type 1 diabetes
تواريخ الأحداث: Date Created: 20240623 Latest Revision: 20240623
رمز التحديث: 20240624
DOI: 10.1007/s00125-024-06205-5
PMID: 38910151
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0428
DOI:10.1007/s00125-024-06205-5