دورية أكاديمية

Studying the Dynamics of Tunneling Tubes and Cellular Spheres.

التفاصيل البيبلوغرافية
العنوان: Studying the Dynamics of Tunneling Tubes and Cellular Spheres.
المؤلفون: Thanedar S; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA., Heng E; Stanford University, Stanford, CA, USA., Ju D; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA., Zhang K; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA., Heng HH; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA. hheng@med.wayne.edu.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2825, pp. 333-343.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Cell Communication* , Spheroids, Cellular*/cytology, Humans ; Cell Culture Techniques/methods ; Cell Line, Tumor
مستخلص: Cancer cytogenetic analyses often involve cell culture. However, many cytogeneticists overlook interesting phenotypes associated with cultured cells. Given that cytogeneticists need to focus more on phenotypes to comprehend the genotypes, the biological significance of seemingly trivial cellular variations deserves attention. One example is the formation of cellular tunneling tubes (TTs) in cultured cancer cells, which likely play a role in cell-to-cell communication and material transport. In this chapter, we describe protocols for studying these TTs as well as cellular spheres. In addition to diverse chromosomal variants, these different types of variations should be considered for understanding cancer heterogeneity and dynamics, as they illustrate the importance of various forms of fuzzy inheritance.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: McClintock B (1984) The significance of responses of the genome to challenge. Science (New York) 226(4676):792–801. https://doi.org/10.1126/science.15739260. (PMID: 10.1126/science.15739260)
Heng HH, Regan SM, Liu G et al (2016) Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet 9:15. https://doi.org/10.1186/s13039-016-0223-2. (PMID: 10.1186/s13039-016-0223-2268777684752783)
Ye CJ, Regan S, Liu G et al (2018) Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet 11:31. https://doi.org/10.1186/s13039-018-0376-2. (PMID: 10.1186/s13039-018-0376-2297607815946397)
Heng HH, Liu G, Stevens JB et al (2013) Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 139(3):144–157. https://doi.org/10.1159/000348682. (PMID: 10.1159/00034868223571381)
Heng HH, Stevens JB, Liu G et al (2006) Stochastic cancer progression driven by non-clonal chromosome aberrations. J Cell Physiol 208(2):461–472. https://doi.org/10.1002/jcp.20685. (PMID: 10.1002/jcp.2068516688757)
Heng HH (2015) Debating cancer: the paradox in cancer research. World Scientific, Singapore. ISBN 978-981-4520-84-3. (PMID: 10.1142/8879)
Heng HH (2019) Genome chaos: rethinking genetics, evolution, and molecular medicine. Academic Press, San Diego, CA. https://doi.org/10.1016/C2016-0-05291-9. (PMID: 10.1016/C2016-0-05291-9)
Weihua Z, Lin Q, Ramoth AJ et al (2011) Formation of solid tumors by a single multinucleated cancer cell. Cancer 117:4092–4099. (PMID: 10.1002/cncr.2602121365635)
Zhang S, Mercado-Uribe I, Xing Z et al (2014) Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33:116–128. (PMID: 10.1038/onc.2013.9623524583)
Li X, Zhong Y, Zhang X et al (2023) Spatiotemporal view of malignant histogenesis and macroevolution via formation of polyploid giant cancer cells. Oncogene 42:665. (PMID: 10.1038/s41388-022-02588-0365968459957731)
Mirzayans R, Murray D (2023) Intratumor heterogeneity and treatment resistance of solid tumors with a focus on polyploid/senescent giant cancer cells (PGCCs). Int J Mol Sci 24(14):11534. https://doi.org/10.3390/ijms241411534. (PMID: 10.3390/ijms2414115343751129110380821)
Ye CJ, Sharpe Z, Alemara S et al (2019) Micronuclei and genome chaos: changing the system inheritance. Genes 10(5):366. https://doi.org/10.3390/genes10050366. (PMID: 10.3390/genes10050366310861016562739)
Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science (New York) 303(5660):1007–1010. https://doi.org/10.1126/science.1093133. (PMID: 10.1126/science.1093133)
Gerdes HH, Rustom A, Wang X (2013) Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 130(6–8):381–387. https://doi.org/10.1016/j.mod.2012.11.006. (PMID: 10.1016/j.mod.2012.11.00623246917)
Zhang S, Kazanietz MG, Cooke M (2020) Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease. Am J Physiol Cell Physiol 319(5):C877–C884. https://doi.org/10.1152/ajpcell.00351.2020. (PMID: 10.1152/ajpcell.00351.2020328457207701268)
Roehlecke C, Schmidt MH (2020) Tunneling nanotubes and tumor microtubes in cancer. Cancers 12(4):857. https://doi.org/10.3390/cancers12040857. (PMID: 10.3390/cancers12040857322448397226329)
Liu G, Stevens JB, Horne SD et al (2014) Genome chaos: survival strategy during crisis. Cell cycle (Georgetown, Tex) 13(4):528–537. https://doi.org/10.4161/cc.27378. (PMID: 10.4161/cc.2737824299711)
Ye JC, Horne S, Zhang JZ et al (2021) Therapy induced genome chaos: a novel mechanism of rapid cancer drug resistance. Front Cell Dev Biol 9:676344. (PMID: 10.3389/fcell.2021.676344341951968237085)
Ramírez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97(5):599–607. https://doi.org/10.1016/s0092-8674(00)80771-0. (PMID: 10.1016/s0092-8674(00)80771-010367889)
Heng HH, Regan S, Ye CJ (2016) Genotype, environment, and evolutionary mechanism of diseases. Environ Dis 1:14–23. Available online: http://www.environmentmed.org/text.asp?2016/1/1/14/180332. (PMID: 10.4103/2468-5690.180332)
Heng J, Heng HH (2022) Genome chaos: creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 81:160–175. https://doi.org/10.1016/j.semcancer.2020.11.003. (PMID: 10.1016/j.semcancer.2020.11.00333189848)
Heng J, Heng HH (2021) Karyotype coding: the creation and maintenance of system information for complexity and biodiversity. Bio Systems 208:104476. https://doi.org/10.1016/j.biosystems.2021.104476. (PMID: 10.1016/j.biosystems.2021.10447634237348)
Heng J, Heng HH (2023) Karyotype as code of codes: an inheritance platform to shape the pattern and scale of evolution. Bio Systems 233:105016. Advance online publication. https://doi.org/10.1016/j.biosystems.2023.105016. (PMID: 10.1016/j.biosystems.2023.10501637659678)
Heng HH (2017) Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases. J Eval Clin Pract 23(1):233–237. https://doi.org/10.1111/jep.12598. (PMID: 10.1111/jep.1259827421676)
Rustom A (2016) The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol 6(6):160057. https://doi.org/10.1098/rsob.160057. (PMID: 10.1098/rsob.160057272786484929939)
Zurzolo C (2021) Tunneling nanotubes: reshaping connectivity. Curr Opin Cell Biol 71:139–147. https://doi.org/10.1016/j.ceb.2021.03.003. (PMID: 10.1016/j.ceb.2021.03.00333866130)
Tarasiuk O, Scuteri A (2022) Role of tunneling nanotubes in the nervous system. Int J Mol Sci 23(20):12545. https://doi.org/10.3390/ijms232012545. (PMID: 10.3390/ijms232012545362933969604327)
Eugenin E, Camporesi E, Peracchia C (2022) Direct cell-cell communication via membrane pores, gap junction channels, and tunneling nanotubes: medical relevance of mitochondrial exchange. Int J Mol Sci 23(11):6133. https://doi.org/10.3390/ijms23116133. (PMID: 10.3390/ijms23116133356828099181466)
Dagar S, Pathak D, Oza HV et al (2021) Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 478(22):3977–3998. https://doi.org/10.1042/BCJ20210077. (PMID: 10.1042/BCJ2021007734813650)
McMillen P, Oudin MJ, Levin et al (2021) Beyond neurons: long distance communication in development and cancer. Front Cell Develop Biol 9: 739024. https://doi.org/10.3389/fcell.2021.739024.
Furst R (2021) The importance of Henry H. Heng’s genome architecture theory. Prog Biophys Mol Biol 165:153–156. https://doi.org/10.1016/j.pbiomolbio.2021.08.009. (PMID: 10.1016/j.pbiomolbio.2021.08.00934481833)
Heng E, Thanedar S, Heng HH (2023) Challenges and opportunities for clinical cytogenetics in the 21st century. Genes 14(2):493. (PMID: 10.3390/genes14020493368334199956237)
فهرسة مساهمة: Keywords: Cell communication; Cellular heterogeneity; Fuzzy inheritance; Tube network; Tunneling nanotubes or TNTs
تواريخ الأحداث: Date Created: 20240624 Date Completed: 20240624 Latest Revision: 20240624
رمز التحديث: 20240624
DOI: 10.1007/978-1-0716-3946-7_19
PMID: 38913319
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3946-7_19