دورية أكاديمية

Can flow cytometric measurements of reactive oxygen species levels determine minimal inhibitory concentrations and antibiotic susceptibility testing for Acinetobacter baumannii?

التفاصيل البيبلوغرافية
العنوان: Can flow cytometric measurements of reactive oxygen species levels determine minimal inhibitory concentrations and antibiotic susceptibility testing for Acinetobacter baumannii?
المؤلفون: Yeo JH; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.; SingHealth-Duke-NUS Academic Clinical Programme, Singapore, Singapore., Low JQ; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore., Begam N; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore., Leow WT; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore., Kwa AL; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.; SingHealth-Duke-NUS Academic Clinical Programme, Singapore, Singapore.; Department of Pharmacy, NUS, Singapore, Singapore.; Emerging Infection Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore.
المصدر: PloS one [PLoS One] 2024 Jun 24; Vol. 19 (6), pp. e0305939. Date of Electronic Publication: 2024 Jun 24 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science
مواضيع طبية MeSH: Acinetobacter baumannii*/drug effects , Acinetobacter baumannii*/metabolism , Flow Cytometry*/methods , Microbial Sensitivity Tests*/methods , Anti-Bacterial Agents*/pharmacology , Reactive Oxygen Species*/metabolism, Humans ; Carbapenems/pharmacology ; Acinetobacter Infections/microbiology ; Acinetobacter Infections/drug therapy
مستخلص: Current antimicrobial susceptibility testing (AST) requires 16-24 hours, delaying initiation of appropriate antibiotics. Hence, there is a need for rapid AST. This study aims to develop and evaluate the feasibility of a rapid flow cytometric AST assay to determine minimum inhibitory concentration (MIC) for carbapenem-resistant Acinetobacter baumannii (CRAB). Antibiotic exposure causes increased intracellular reactive oxygen species (ROS) in bacteria. We hypothesized that ROS can be used as a marker to determine MIC. We assessed three CRAB clinical isolates across fifteen antibiotics at various concentrations in a customized 96-well microtiter plate. The antibiotics assessed include amikacin, beta-lactams (ampicillin/sulbactam, aztreonam, cefepime, ceftolozane/tazobactam, doripenem, imipenem, meropenem, and piperacillin/tazobactam), levofloxacin, polymyxin B, rifampicin, trimethoprim/sulfamethoxazole, and tetracyclines (tigecycline and minocycline). These clinical CRAB isolates were assessed for ROS after antibiotic treatment. Increased ROS levels indicated by increased RedoxSensorTM Green (RSG) fluorescence intensity was assessed using flow cytometry (FCM). MIC was set as the lowest antibiotic concentration that gives a ≥1.5-fold increase in mode RSG fluorescence intensity (MICRSG). Accuracy of MICRSG was determined by comparing against microtiter broth dilution method performed under CLSI guidelines. ROS was deemed accurate in determining the MICs for β-lactams (83.3% accuracy) and trimethoprim/sulfamethoxazole (100% accuracy). In contrast, ROS is less accurate in determining MICs for levofloxacin (33.3% accuracy), rifampicin (0% accuracy), amikacin (33.3% accuracy), and tetracyclines (33.3% accuracy). Collectively, this study described an FCM-AST assay to determine antibiotic susceptibility of CRAB isolates within 5 hours, reducing turnaround time up to 19 hours.
Competing Interests: The authors have declared that no competing interests exist
(Copyright: © 2024 Yeo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
References: Science. 2013 Mar 8;339(6124):1210-3. (PMID: 23471409)
Eur J Clin Microbiol Infect Dis. 2014 Oct;33(10):1675-85. (PMID: 24832022)
J Antimicrob Chemother. 2021 Nov 12;76(12):3183-3191. (PMID: 34477846)
Chem Commun (Camb). 2014 Aug 4;50(60):8181-4. (PMID: 24926565)
Microb Pathog. 2019 Jan;126:393-398. (PMID: 30476577)
J Microbiol Immunol Infect. 2022 Jun;55(3):463-473. (PMID: 34503920)
Crit Care. 2007;11(3):134. (PMID: 17543135)
Int J Antimicrob Agents. 2022 Oct;60(4):106644. (PMID: 35907596)
Microb Drug Resist. 2010 Sep;16(3):209-15. (PMID: 20707714)
Int J Mol Sci. 2021 Jan 05;22(1):. (PMID: 33466437)
Clin Microbiol Rev. 2017 Jan;30(1):1-22. (PMID: 27795305)
Cytometry. 1982 Jan;2(4):249-57. (PMID: 7035105)
Cell Rep. 2015 Nov 3;13(5):968-80. (PMID: 26565910)
Crit Care. 2016 Jul 11;20(1):221. (PMID: 27417949)
Nat Protoc. 2008;3(2):163-75. (PMID: 18274517)
Int J Mol Sci. 2017 Apr 08;18(4):. (PMID: 28397766)
Cell. 2007 Sep 7;130(5):797-810. (PMID: 17803904)
Front Microbiol. 2021 Feb 04;11:622534. (PMID: 33613470)
Antibiotics (Basel). 2020 Mar 12;9(3):. (PMID: 32178356)
Infect Chemother. 2016 Sep;48(3):174-180. (PMID: 27659440)
Science. 2013 Mar 8;339(6124):1213-6. (PMID: 23471410)
Ups J Med Sci. 2014 May;119(2):149-53. (PMID: 24666223)
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80. (PMID: 26100898)
Front Microbiol. 2019 Jan 30;10:80. (PMID: 30761114)
Nat Rev Microbiol. 2019 Aug;17(8):479-496. (PMID: 31235888)
Clin Microbiol Rev. 2015 Jan;28(1):191-207. (PMID: 25567227)
Am J Epidemiol. 2021 Nov 2;190(11):2395-2404. (PMID: 34048554)
Theranostics. 2017 Apr 10;7(7):1795-1805. (PMID: 28638468)
Front Immunol. 2015 Jul 27;6:380. (PMID: 26284066)
Biomed Pharmacother. 2018 May;101:737-744. (PMID: 29524882)
J Antimicrob Chemother. 2007 Mar;59(3):525-30. (PMID: 17213265)
J Appl Microbiol. 2020 Oct;129(4):806-822. (PMID: 32418295)
Front Microbiol. 2020 Mar 27;11:472. (PMID: 32292393)
Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2100-9. (PMID: 24803433)
Microorganisms. 2016 Feb 16;4(1):. (PMID: 27681907)
Emerg Microbes Infect. 2020 Dec;9(1):639-650. (PMID: 32192413)
World J Microbiol Biotechnol. 2022 Jul 4;38(9):151. (PMID: 35781757)
Antimicrob Agents Chemother. 2012 Nov;56(11):5642-9. (PMID: 22908157)
Diagn Microbiol Infect Dis. 2010 Nov;68(3):307-11. (PMID: 20955916)
Cytometry. 1982 Sep;3(2):129-33. (PMID: 6216082)
Clin Microbiol Infect. 2020 Nov;26(11):1559.e1-1559.e4. (PMID: 32835792)
Infect Drug Resist. 2018 Apr 24;11:567-576. (PMID: 29731645)
Int J Antimicrob Agents. 2012 Sep;40(3):235-8. (PMID: 22784855)
Nat Metab. 2022 Jun;4(6):651-662. (PMID: 35760871)
Science. 2013 Jun 28;340(6140):1583-7. (PMID: 23812717)
Cell Rep. 2019 Nov 19;29(8):2184-2191.e3. (PMID: 31747593)
Expert Rev Anti Infect Ther. 2013 Apr;11(4):395-409. (PMID: 23566149)
Sci Rep. 2017 May 15;7(1):1903. (PMID: 28507322)
Methods Mol Biol. 2016;1333:83-100. (PMID: 26468102)
Microb Pathog. 2019 Feb;127:239-245. (PMID: 30540925)
Antimicrob Agents Chemother. 2021 Feb 16;95(5):. (PMID: 33593839)
Int J Antimicrob Agents. 2018 Nov;52(5):629-636. (PMID: 30081139)
Antimicrob Agents Chemother. 2020 Aug 20;64(9):. (PMID: 32571821)
PLoS One. 2015 Aug 19;10(8):e0136082. (PMID: 26287490)
Int J Infect Dis. 2023 Feb;127:48-55. (PMID: 36516915)
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (Reactive Oxygen Species)
0 (Carbapenems)
تواريخ الأحداث: Date Created: 20240624 Date Completed: 20240624 Latest Revision: 20240626
رمز التحديث: 20240626
مُعرف محوري في PubMed: PMC11195951
DOI: 10.1371/journal.pone.0305939
PMID: 38913680
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-6203
DOI:10.1371/journal.pone.0305939