دورية أكاديمية

Intertwining roles of R-loops and G-quadruplexes in DNA repair, transcription and genome organization.

التفاصيل البيبلوغرافية
العنوان: Intertwining roles of R-loops and G-quadruplexes in DNA repair, transcription and genome organization.
المؤلفون: Wulfridge P; Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA.; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA., Sarma K; Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA. kavitha@sarmalab.com.; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA. kavitha@sarmalab.com.
المصدر: Nature cell biology [Nat Cell Biol] 2024 Jul; Vol. 26 (7), pp. 1025-1036. Date of Electronic Publication: 2024 Jun 24.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Macmillan Magazines Ltd., [1999-
مواضيع طبية MeSH: G-Quadruplexes* , DNA Repair* , R-Loop Structures*/genetics , Transcription, Genetic*, Humans ; Animals ; DNA/metabolism ; DNA/genetics ; DNA/chemistry ; Genome/genetics ; Gene Regulatory Networks ; RNA/metabolism ; RNA/genetics ; RNA/chemistry ; Neoplasms/genetics ; Neoplasms/pathology ; Neoplasms/metabolism
مستخلص: R-loops are three-stranded nucleic acid structures that are abundant and widespread across the genome and that have important physiological roles in many nuclear processes. Their accumulation is observed in cancers and neurodegenerative disorders. Recent studies have implicated a function for R-loops and G-quadruplex (G4) structures, which can form on the displaced single strand of R-loops, in three-dimensional genome organization in both physiological and pathological contexts. Here we discuss the interconnected functions of DNA:RNA hybrids and G4s within R-loops, their impact on DNA repair and gene regulatory networks, and their emerging roles in genome organization during development and disease.
(© 2024. Springer Nature Limited.)
References: Thomas, M., White, R. L. & Davis, R. W. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. Natl Acad. Sci. USA 73, 2294–2298 (1976). (PMID: 78167443053510.1073/pnas.73.7.2294)
Drolet, M., Bi, X. & Liu, L. F. Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J. Biol. Chem. 269, 2068–2074 (1994). (PMID: 829445810.1016/S0021-9258(17)42136-3)
Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003). (PMID: 1452741610.1016/j.molcel.2003.08.010)
Wahba, L., Gore, S. K. & Koshland, D. The homologous recombination machinery modulates the formation of RNA–DNA hybrids and associated chromosome instability. eLife 2, e00505 (2013). (PMID: 23795288367953710.7554/eLife.00505)
Cloutier, S. C. et al. Regulated formation of lncRNA–DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol. Cell 61, 393–404 (2016). (PMID: 26833086474412710.1016/j.molcel.2015.12.024)
Ariel, F. et al. R-loop mediated trans action of the APOLO long noncoding RNA. Mol. Cell 77, 1055–1065.e4 (2020). (PMID: 3195299010.1016/j.molcel.2019.12.015)
Luo, H. et al. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol. Cell 82, 833–851.e11 (2022). (PMID: 35180428898543010.1016/j.molcel.2022.01.014)
Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003). (PMID: 1267981210.1038/ni919)
Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020). (PMID: 32005969711663910.1038/s41580-019-0206-3)
García-Muse, T. & Aguilera, A. R. Loops: from physiological to pathological roles. Cell 179, 604–618 (2019). (PMID: 3160751210.1016/j.cell.2019.08.055)
Brickner, J. R., Garzon, J. L. & Cimprich, K. A. Walking a tightrope: the complex balancing act of R-loops in genome stability. Mol. Cell 82, 2267–2297 (2022). (PMID: 35508167923301110.1016/j.molcel.2022.04.014)
Petermann, E., Lan, L. & Zou, L. Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nat. Rev. Mol. Cell Biol. 23, 521–540 (2022). (PMID: 3545991010.1038/s41580-022-00474-x)
Masse, E. & Drolet, M. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J. Biol. Chem. 274, 16659–16664 (1999). (PMID: 1034723410.1074/jbc.274.23.16659)
Roy, D., Zhang, Z., Lu, Z., Hsieh, C. L. & Lieber, M. R. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol. Cell. Biol. 30, 146–159 (2010). (PMID: 1984106210.1128/MCB.00897-09)
Roy, D. & Lieber, M. R. G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol. Cell. Biol. 29, 3124–3133 (2009). (PMID: 19307304268200210.1128/MCB.00139-09)
Duquette, M. L., Handa, P., Vincent, J. A., Taylor, A. F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004). (PMID: 1523173944352310.1101/gad.1200804)
Henderson, E., Hardin, C. C., Walk, S. K., Tinoco, I. Jr. & Blackburn, E. H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine–guanine base pairs. Cell 51, 899–908 (1987). (PMID: 369066410.1016/0092-8674(87)90577-0)
Wang, Y. & Patel, D. J. Guanine residues in d(T 2 AG 3 ) and d(T 2 G 4 ) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31, 8112–8119 (1992). (PMID: 152515310.1021/bi00150a002)
Kruisselbrink, E. et al. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 18, 900–905 (2008). (PMID: 1853856910.1016/j.cub.2008.05.013)
Lopes, J. et al. G-quadruplex-induced instability during leading-strand replication. EMBO J. 30, 4033–4046 (2011). (PMID: 21873979320978510.1038/emboj.2011.316)
Lyu, J., Shao, R., Kwong Yung, P. Y. & Elsässer, S. J. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. 50, e13 (2022). (PMID: 3479217210.1093/nar/gkab1073)
Zheng, K. W. et al. Superhelicity constrains a localized and R-loop-dependent formation of G-quadruplexes at the upstream region of transcription. ACS Chem. Biol. 12, 2609–2618 (2017). (PMID: 2884637310.1021/acschembio.7b00435)
Tan, J., Wang, X., Phoon, L., Yang, H. & Lan, L. Resolution of ROS-induced G-quadruplexes and R-loops at transcriptionally active sites is dependent on BLM helicase. FEBS Lett. 594, 1359–1367 (2020). (PMID: 3197707710.1002/1873-3468.13738)
De Magis, A. et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl Acad. Sci. USA 116, 816–825 (2019). (PMID: 3059156710.1073/pnas.1810409116)
Kim, H. D., Choe, J. & Seo, Y. S. The sen1 + gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38, 14697–14710 (1999). (PMID: 1054519610.1021/bi991470c)
Mersaoui, S. Y. et al. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J. 38, e100986 (2019). (PMID: 31267554666992410.15252/embj.2018100986)
Chakraborty, P. & Grosse, F. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10, 654–665 (2011). (PMID: 2156181110.1016/j.dnarep.2011.04.013)
Schwab, R. A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361 (2015). (PMID: 26593718464423210.1016/j.molcel.2015.09.012)
Sanders, C. M. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem. J. 430, 119–128 (2010). (PMID: 2052493310.1042/BJ20100612)
Wu, Y., Shin-ya, K. & Brosh, R. M. Jr. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol. 28, 4116–4128 (2008). (PMID: 18426915242312110.1128/MCB.02210-07)
Sun, H., Karow, J. K., Hickson, I. D. & Maizels, N. The Bloom’s syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27587–27592 (1998). (PMID: 976529210.1074/jbc.273.42.27587)
Vaughn, J. P. et al. The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. J. Biol. Chem. 280, 38117–38120 (2005). (PMID: 1615073710.1074/jbc.C500348200)
Boulé, J. B. & Zakian, V. A. The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res. 35, 5809–5818 (2007). (PMID: 17720711203448210.1093/nar/gkm613)
Popuri, V. et al. The human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. J. Biol. Chem. 283, 17766–17776 (2008). (PMID: 1844842910.1074/jbc.M709749200)
Mosler, T. et al. R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat. Commun. 12, 7314 (2021). (PMID: 34916496867784910.1038/s41467-021-27530-y)
Cristini, A., Groh, M., Kristiansen, M. S. & Gromak, N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep. 23, 1891–1905 (2018). (PMID: 29742442597658010.1016/j.celrep.2018.04.025)
Zhang, X., Spiegel, J., Martínez Cuesta, S., Adhikari, S. & Balasubramanian, S. Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat. Chem. 13, 626–633 (2021). (PMID: 34183817824532310.1038/s41557-021-00736-9)
Yan, Q. et al. Proximity labeling identifies a repertoire of site-specific R-loop modulators. Nat. Commun. 13, 53 (2022). (PMID: 35013239874887910.1038/s41467-021-27722-6)
Mazina, O. M. et al. Replication protein A binds RNA and promotes R-loop formation. J. Biol. Chem. 295, 14203–14213 (2020). (PMID: 32796030754904810.1074/jbc.RA120.013812)
Nguyen, H. D. et al. Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1. Mol. Cell 65, 832–847.e4 (2017). (PMID: 28257700550721410.1016/j.molcel.2017.01.029)
Phoenix, P., Raymond, M. A., Massé, E. & Drolet, M. Roles of DNA topoisomerases in the regulation of R-loop formation in vitro. J. Biol. Chem. 272, 1473–1479 (1997). (PMID: 899981610.1074/jbc.272.3.1473)
Lang, K. S. et al. Replication–transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170, 787–799.e18 (2017). (PMID: 28802046563022910.1016/j.cell.2017.07.044)
Nguyen, D. T. et al. The chromatin remodelling factor ATRX suppresses R-loops in transcribed telomeric repeats. EMBO Rep. 18, 914–928 (2017). (PMID: 28487353545200910.15252/embr.201643078)
Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014). (PMID: 25435140427263810.1016/j.molcel.2014.10.020)
Marabitti, V. et al. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res. 47, 3485–3502 (2019). (PMID: 30657978646817010.1093/nar/gkz025)
Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019). (PMID: 30735654640281910.1016/j.molcel.2019.01.024)
Ohle, C. et al. Transient RNA–DNA hybrids are required for efficient double-strand break repair. Cell 167, 1001–1013.e7 (2016). (PMID: 2788129910.1016/j.cell.2016.10.001)
Lu, W. T. et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat. Commun. 9, 532 (2018). (PMID: 29416038580327410.1038/s41467-018-02893-x)
D’Alessandro, G. et al. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat. Commun. 9, 5376 (2018). (PMID: 30560944629909310.1038/s41467-018-07799-2)
Bader, A. S. et al. DDX17 is required for efficient DSB repair at DNA:RNA hybrid deficient loci. Nucleic Acids Res. 50, 10487–10502 (2022). (PMID: 36200807956128210.1093/nar/gkac843)
Bader, A. S. & Bushell, M. DNA:RNA hybrids form at DNA double-strand breaks in transcriptionally active loci. Cell Death Dis. 11, 280 (2020). (PMID: 32332801718182610.1038/s41419-020-2464-6)
Lim, G. et al. Translocating RNA polymerase generates R-loops at DNA double-strand breaks without any additional factors. Nucleic Acids Res. 51, 9838–9848 (2023). (PMID: 376387631057004710.1093/nar/gkad689)
Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012). (PMID: 2292029110.1016/j.molcel.2012.07.029)
Yun, M. H. & Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009). (PMID: 19357644285732410.1038/nature07955)
Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010). (PMID: 20362325285757010.1016/j.cell.2010.03.012)
Marnef, A. & Legube, G. R-loops as Janus-faced modulators of DNA repair. Nat. Cell Biol. 23, 305–313 (2021). (PMID: 3383728810.1038/s41556-021-00663-4)
Hatchi, E. et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57, 636–647 (2015). (PMID: 25699710435167210.1016/j.molcel.2015.01.011)
Cohen, S. et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 9, 533 (2018). (PMID: 29416069580326010.1038/s41467-018-02894-w)
Spiegel, J. et al. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 22, 117 (2021). (PMID: 33892767806339510.1186/s13059-021-02324-z)
Lago, S. et al. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat. Commun. 12, 3885 (2021). (PMID: 34162892822226510.1038/s41467-021-24198-2)
Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011). (PMID: 2219596910.1016/j.molcel.2011.10.013)
Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013). (PMID: 23352430362973010.1016/j.cell.2013.01.006)
Yasuhara, T. et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558–570.e11 (2018). (PMID: 3024501110.1016/j.cell.2018.08.056)
Keskin, H. et al. Transcript-RNA-templated DNA recombination and repair. Nature 515, 436–439 (2014). (PMID: 25186730489996810.1038/nature13682)
Wei, L. et al. DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc. Natl Acad. Sci. USA 112, E3495–E3504 (2015). (PMID: 26100862450020310.1073/pnas.1507105112)
Teng, Y. et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 9, 4115 (2018). (PMID: 30297739617587810.1038/s41467-018-06586-3)
Liu, S. et al. DNA repair protein RAD52 is required for protecting G-quadruplexes in mammalian cells. J. Biol. Chem. 299, 102770 (2023). (PMID: 3647042810.1016/j.jbc.2022.102770)
De Magis, A. et al. Zuo1 supports G4 structure formation and directs repair toward nucleotide excision repair. Nat. Commun. 11, 3907 (2020). (PMID: 32764578741338710.1038/s41467-020-17701-8)
Gray, L. T., Vallur, A. C., Eddy, J. & Maizels, N. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat. Chem. Biol. 10, 313–318 (2014). (PMID: 24609361400636410.1038/nchembio.1475)
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998). (PMID: 948872310.1074/jbc.273.10.5858)
Arnould, C. et al. Chromatin compartmentalization regulates the response to DNA damage. Nature 623, 183–192 (2023). (PMID: 378531251062007810.1038/s41586-023-06635-y)
Yadav, T. et al. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch. Mol. Cell 82, 3985–4000.e4 (2022). (PMID: 36265486963772810.1016/j.molcel.2022.09.026)
Graf, M. et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170, 72–85.e14 (2017). (PMID: 2866612610.1016/j.cell.2017.06.006)
Castillo-Guzman, D. & Chédin, F. Defining R-loop classes and their contributions to genome instability. DNA Repair 106, 103182 (2021). (PMID: 34303066869117610.1016/j.dnarep.2021.103182)
Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011). (PMID: 21700224314596010.1016/j.molcel.2011.04.026)
Chen, L. et al. R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol. Cell 68, 745–757.e5 (2017). (PMID: 29104020595707010.1016/j.molcel.2017.10.008)
Lee, C.-Y. et al. R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat. Commun. 11, 3392 (2020). (PMID: 32636376734187910.1038/s41467-020-17176-7)
Boque-Sastre, R. et al. Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc. Natl Acad. Sci. USA 112, 5785–5790 (2015). (PMID: 25902512442645810.1073/pnas.1421197112)
Tan-Wong, S. M., Dhir, S. & Proudfoot, N. J. R-loops promote antisense transcription across the mammalian genome. Mol. Cell 76, 600–616.e6 (2019). (PMID: 31679819686850910.1016/j.molcel.2019.10.002)
Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J. & Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340, 619–621 (2013). (PMID: 23641115514499510.1126/science.1234848)
Zhao, D. Y. et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 529, 48–53 (2016). (PMID: 2670080510.1038/nature16469)
Chen, P. B., Chen, H. V., Acharya, D., Rando, O. J. & Fazzio, T. G. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat. Struct. Mol. Biol. 22, 999–1007 (2015). (PMID: 26551076467783210.1038/nsmb.3122)
Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chédin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012). (PMID: 22387027331927210.1016/j.molcel.2012.01.017)
Grunseich, C. et al. Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol. Cell 69, 426–437.e7 (2018). (PMID: 29395064581587810.1016/j.molcel.2017.12.030)
Mao, S. Q. et al. DNA G-quadruplex structures mold the DNA methylome. Nat. Struct. Mol. Biol. 25, 951–957 (2018). (PMID: 30275516617329810.1038/s41594-018-0131-8)
Loiko, A. G. et al. Impact of G-quadruplex structures on methylation of model substrates by DNA methyltransferase Dnmt3a. Int. J. Mol. Sci. 23, 10226 (2022). (PMID: 36142137949900410.3390/ijms231810226)
Arab, K. et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat. Genet. 51, 217–223 (2019). (PMID: 30617255642009810.1038/s41588-018-0306-6)
Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010). (PMID: 20192758295342510.1146/annurev-biochem-060208-105251)
Shiromoto, Y., Sakurai, M., Minakuchi, M., Ariyoshi, K. & Nishikura, K. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells. Nat. Commun. 12, 1654 (2021). (PMID: 33712600795504910.1038/s41467-021-21921-x)
Yang, X. et al. m6A promotes R-loop formation to facilitate transcription termination. Cell Res. 29, 1035–1038 (2019). (PMID: 31606733695133910.1038/s41422-019-0235-7)
Abakir, A. et al. N 6 -methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat. Genet. 52, 48–55 (2020). (PMID: 3184432310.1038/s41588-019-0549-x)
Watts, J. A. et al. A common transcriptional mechanism involving R-loop and RNA abasic site regulates an enhancer RNA of APOE. Nucleic Acids Res. 50, 12497–12514 (2022). (PMID: 36453989975705210.1093/nar/gkac1107)
Malfatti, M. C. et al. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res. 45, 11193–11212 (2017). (PMID: 28977421573753910.1093/nar/gkx723)
Zhang, C. et al. METTL3 and N 6 -methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol. Cell 79, 425–442.e7 (2020). (PMID: 3261508810.1016/j.molcel.2020.06.017)
Chen, H. et al. m 5 C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat. Commun. 11, 2834 (2020). (PMID: 32503981727504110.1038/s41467-020-16722-7)
Yang, H. et al. The RNA m 5 C modification in R-loops as an off switch of Alt-NHEJ. Nat. Commun. 14, 6114 (2023). (PMID: 377775051054235810.1038/s41467-023-41790-w)
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009). (PMID: 19815776285859410.1126/science.1181369)
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). (PMID: 25497547563582410.1016/j.cell.2014.11.021)
Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol. Cell 49, 773–782 (2013). (PMID: 23473598374167310.1016/j.molcel.2013.02.011)
Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016). (PMID: 27259200537150910.1016/j.molcel.2016.05.018)
Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016). (PMID: 2773953210.1038/nrg.2016.112)
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018). (PMID: 3036716510.1038/s41576-018-0060-8)
Hansen, A. S. CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Nucleus 11, 132–148 (2020). (PMID: 32631111756688610.1080/19491034.2020.1782024)
Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017). (PMID: 29217591573088810.15252/embj.201798004)
Zhang, H. et al. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Mol. Cell 83, 2856–2871.e8 (2023). (PMID: 3753633910.1016/j.molcel.2023.07.006)
Vostrov, A. A. & Quitschke, W. W. The zinc finger protein CTCF binds to the APBβ domain of the amyloid β-protein precursor promoter. Evidence for a role in transcriptional activation. J. Biol. Chem. 272, 33353–33359 (1997). (PMID: 940712810.1074/jbc.272.52.33353)
Chernukhin, I. et al. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol. Cell. Biol. 27, 1631–1648 (2007). (PMID: 17210645182045210.1128/MCB.01993-06)
Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999). (PMID: 1045861310.1016/S0092-8674(00)81967-4)
Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245 (2007). (PMID: 17382889257272610.1016/j.cell.2006.12.048)
Chen, H., Tian, Y., Shu, W., Bo, X. & Wang, S. Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS ONE 7, e41374 (2012). (PMID: 22829947340063610.1371/journal.pone.0041374)
Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015). (PMID: 25693564451536310.1038/nature14222)
Hou, Y. et al. Integrative characterization of G-quadruplexes in the three-dimensional chromatin structure. Epigenetics 14, 894–911 (2019). (PMID: 31177910669199710.1080/15592294.2019.1621140)
Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016). (PMID: 27373332495552210.1016/j.molcel.2016.05.032)
Wulfridge, P. et al. G-quadruplexes associated with R-loops promote CTCF binding. Mol. Cell 83, 3064–3079.e5 (2023). (PMID: 3755299310.1016/j.molcel.2023.07.009)
Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537–1551 (2013). (PMID: 23791181377740110.1016/j.cell.2013.05.028)
Kung, J. T. et al. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol. Cell 57, 361–375 (2015). (PMID: 25578877431620010.1016/j.molcel.2014.12.006)
Saldaña-Meyer, R. et al. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev. 28, 723–734 (2014). (PMID: 24696455401549610.1101/gad.236869.113)
Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422.e5 (2019). (PMID: 31522988719584110.1016/j.molcel.2019.08.015)
Islam, Z. et al. Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries. Genome Res. 33, 1–17 (2023). (PMID: 36650052997715210.1101/gr.276643.122)
Tikhonova, P. et al. DNA G-quadruplexes contribute to CTCF recruitment. Int. J. Mol. Sci. 22, 7090 (2021). (PMID: 34209337826936710.3390/ijms22137090)
Li, L. et al. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat. Chem. Biol. 17, 161–168 (2021). (PMID: 3319991210.1038/s41589-020-00695-1)
Yuan, J., He, X. & Wang, Y. G-quadruplex DNA contributes to RNA polymerase II-mediated 3D chromatin architecture. Nucleic Acids Res. 51, 8434–8446 (2023). (PMID: 374277841048466510.1093/nar/gkad588)
Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023). (PMID: 370766201013298410.1038/s41586-023-05961-5)
Guo, J. K. et al. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol. Cell 84, 1271–1289.e12 (2024). (PMID: 3838746210.1016/j.molcel.2024.01.026)
Jeppsson, K. et al. Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks. Sci. Adv. 8, eabn7063 (2022). (PMID: 35687682918723110.1126/sciadv.abn7063)
Porter, H. et al. Cohesin-independent STAG proteins interact with RNA and R-loops and promote complex loading. eLife 12, e79386 (2023). (PMID: 370108861023809110.7554/eLife.79386)
Beagan, J. A. et al. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Res. 27, 1139–1152 (2017). (PMID: 28536180549506610.1101/gr.215160.116)
Sun, J. H. et al. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell 175, 224–238.e15 (2018). (PMID: 30173918617560710.1016/j.cell.2018.08.005)
Kettani, A., Kumar, R. A. & Patel, D. J. Solution structure of a DNA quadruplex containing the fragile X syndrome triplet repeat. J. Mol. Biol. 254, 638–656 (1995). (PMID: 750033910.1006/jmbi.1995.0644)
Groh, M., Lufino, M. M., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014). (PMID: 24787137400671510.1371/journal.pgen.1004318)
Park, D. S. et al. High-throughput Oligopaint screen identifies druggable 3D genome regulators. Nature 620, 209–217 (2023). (PMID: 3743853110.1038/s41586-023-06340-w)
Roy, D., Yu, K. & Lieber, M. R. Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol. Cell. Biol. 28, 50–60 (2008). (PMID: 1795456010.1128/MCB.01251-07)
Wongsurawat, T., Jenjaroenpun, P., Kwoh, C. K. & Kuznetsov, V. Quantitative model of R-loop forming structures reveals a novel level of RNA–DNA interactome complexity. Nucleic Acids Res. 40, e16 (2012). (PMID: 2212122710.1093/nar/gkr1075)
Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005). (PMID: 15914667114008110.1093/nar/gki609)
Huppert, J. L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007). (PMID: 1716999610.1093/nar/gkl1057)
Matos-Rodrigues, G., Hisey, J. A., Nussenzweig, A. & Mirkin, S. M. Detection of alternative DNA structures and its implications for human disease. Mol. Cell 83, 3622–3641 (2023). (PMID: 3786302910.1016/j.molcel.2023.08.018)
Boguslawski, S. J. et al. Characterization of monoclonal antibody to DNA · RNA and its application to immunodetection of hybrids. J. Immunol. Methods 89, 123–130 (1986). (PMID: 242228210.1016/0022-1759(86)90040-2)
Dumelie, J. G. & Jaffrey, S. R. Defining the location of promoter-associated R-loops at near-nucleotide resolution using bisDRIP-seq. eLife 6, e28306 (2017). (PMID: 29072160570521610.7554/eLife.28306)
Hartono, S. R. et al. The affinity of the S9.6 antibody for double-stranded RNAs impacts the accurate mapping of R-loops in fission yeast. J. Mol. Biol. 430, 272–284 (2018). (PMID: 2928956710.1016/j.jmb.2017.12.016)
Smolka, J. A., Sanz, L. A., Hartono, S. R. & Chédin, F. Recognition of RNA by the S9.6 antibody creates pervasive artifacts when imaging RNA:DNA hybrids. J. Cell Biol. 220, e202004079 (2021). (PMID: 33830170804051510.1083/jcb.202004079)
Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013). (PMID: 23422559362224210.1038/nchem.1548)
Hänsel-Hertsch, R., Spiegel, J., Marsico, G., Tannahill, D. & Balasubramanian, S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 13, 551–564 (2018). (PMID: 2947046510.1038/nprot.2017.150)
Galli, S. et al. DNA G-quadruplex recognition in vitro and in live cells by a structure-specific nanobody. J. Am. Chem. Soc. 144, 23096–23103 (2022). (PMID: 36488193978278310.1021/jacs.2c10656)
Yan, Q., Shields, E. J., Bonasio, R. & Sarma, K. Mapping native R-loops genome-wide using a targeted nuclease approach. Cell Rep. 29, 1369–1380.e5 (2019). (PMID: 31665646687098810.1016/j.celrep.2019.09.052)
Wang, K. et al. Genomic profiling of native R loops with a DNA–RNA hybrid recognition sensor. Sci. Adv. 7, eabe3516 (2021). (PMID: 33597247788892610.1126/sciadv.abe3516)
Wulfridge, P. & Sarma, K. A nuclease- and bisulfite-based strategy captures strand-specific R-loops genome-wide. eLife 10, e65146 (2021). (PMID: 33620319790187210.7554/eLife.65146)
Zheng, K. W. et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res. 48, 11706–11720 (2020). (PMID: 33045726767245910.1093/nar/gkaa841)
Malig, M., Hartono, S. R., Giafaglione, J. M., Sanz, L. A. & Chedin, F. Ultra-deep coverage single-molecule R-loop footprinting reveals principles of R-loop formation. J. Mol. Biol. 432, 2271–2288 (2020). (PMID: 32105733766928010.1016/j.jmb.2020.02.014)
Wu, T., Lyu, R. & He, C. spKAS-seq reveals R-loop dynamics using low-input materials by detecting single-stranded DNA with strand specificity. Sci. Adv. 8, eabq2166 (2022). (PMID: 36449625971086810.1126/sciadv.abq2166)
Esnault, C. et al. G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat. Genet. 55, 1359–1369 (2023). (PMID: 3740061510.1038/s41588-023-01437-4)
معلومات مُعتمدة: R01NS127828 U.S. Department of Health & Human Services | National Institutes of Health (NIH); R01GM143229 U.S. Department of Health & Human Services | National Institutes of Health (NIH); F32GM143832 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
المشرفين على المادة: 9007-49-2 (DNA)
63231-63-0 (RNA)
تواريخ الأحداث: Date Created: 20240624 Date Completed: 20240716 Latest Revision: 20240724
رمز التحديث: 20240726
DOI: 10.1038/s41556-024-01437-4
PMID: 38914786
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4679
DOI:10.1038/s41556-024-01437-4