دورية أكاديمية

EphA2 promotes the transcription of KLF4 to facilitate stemness in oral squamous cell carcinoma.

التفاصيل البيبلوغرافية
العنوان: EphA2 promotes the transcription of KLF4 to facilitate stemness in oral squamous cell carcinoma.
المؤلفون: Bai J; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China., Chen Y; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China., Sun Y; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China., Wang X; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China., Wang Y; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China., Guo S; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China., Shang Z; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China. shangzhengjun@whu.edu.cn.; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China. shangzhengjun@whu.edu.cn., Shao Z; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China. shaozhe@whu.edu.cn.; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China. shaozhe@whu.edu.cn.
المصدر: Cellular and molecular life sciences : CMLS [Cell Mol Life Sci] 2024 Jun 25; Vol. 81 (1), pp. 278. Date of Electronic Publication: 2024 Jun 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9705402 Publication Model: Electronic Cited Medium: Internet ISSN: 1420-9071 (Electronic) Linking ISSN: 1420682X NLM ISO Abbreviation: Cell Mol Life Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Basel : Springer
Original Publication: Basel ; Boston : Birkhauser, c1997-
مواضيع طبية MeSH: Kruppel-Like Factor 4*/metabolism , Receptor, EphA2*/metabolism , Receptor, EphA2*/genetics , Kruppel-Like Transcription Factors*/metabolism , Kruppel-Like Transcription Factors*/genetics , Neoplastic Stem Cells*/metabolism , Neoplastic Stem Cells*/pathology , Mouth Neoplasms*/pathology , Mouth Neoplasms*/metabolism , Mouth Neoplasms*/genetics , Carcinoma, Squamous Cell*/pathology , Carcinoma, Squamous Cell*/metabolism , Carcinoma, Squamous Cell*/genetics, Humans ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Animals ; Mice ; Transcription Factors/metabolism ; Transcription Factors/genetics ; Female ; Mice, Nude ; Male ; Prognosis ; MAP Kinase Signaling System/genetics ; Transcription, Genetic
مستخلص: Ephrin receptor A2 (EphA2), a member of the Ephrin receptor family, is closely related to the progression of oral squamous cell carcinoma (OSCC). Cancer stem cells (CSCs) play essential roles in OSCC development and occurrence. The underlying mechanisms between EphA2 and CSCs, however, are not yet fully understood. Here, we found that EphA2 was overexpressed in OSCC tissues and was associated with poor prognosis. Knockdown of EphA2 dampened the CSC phenotype and the tumour-initiating frequency of OSCC cells. Crucially, the effects of EphA2 on the CSC phenotype relied on KLF4, a key transcription factor for CSCs. Mechanistically, EphA2 activated the ERK signalling pathway, promoting the nuclear translocation of YAP. Subsequently, YAP was bound to TEAD3, leading to the transcription of KLF4. Overall, our findings revealed that EphA2 can enhance the stemness of OSCC cells, and this study identified the EphA2/KLF4 axis as a potential target for treating OSCC.
(© 2024. The Author(s).)
References: Chai AWY, Lim KP, Cheong SC (2020) Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol 61:71–83. https://doi.org/10.1016/j.semcancer.2019.09.011. (PMID: 10.1016/j.semcancer.2019.09.01131542510)
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660. (PMID: 10.3322/caac.2166033538338)
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492. (PMID: 10.3322/caac.2149230207593)
Caudell JJ, Gillison ML, Maghami E, Spencer S, Pfister DG, Adkins D, Birkeland AC, Brizel DM, Busse PM, Cmelak AJ et al (2022) NCCN Guidelines® insights: Head and Neck cancers, Version 1.2022. J Natl Compr Canc Netw 20:224–234. https://doi.org/10.6004/jnccn.2022.0016. (PMID: 10.6004/jnccn.2022.001635276673)
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C (2023) Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 15:44. https://doi.org/10.1038/s41368-023-00249-w. (PMID: 10.1038/s41368-023-00249-w3773674810517027)
Mallery SR, Wang D, Santiago B, Pei P, Bissonnette C, Jayawardena JA, Schwendeman SP, Spinney R, Lang J, Fenretinide (2019) Tocilizumab, and Reparixin provide multifaceted disruption of oral squamous cell Carcinoma Stem Cell properties: implications for Tertiary Chemoprevention. Mol Cancer Ther 18:2308–2320. https://doi.org/10.1158/1535-7163.MCT-19-0361. (PMID: 10.1158/1535-7163.MCT-19-0361315152976891199)
Liu Y, Yang M, Luo J, Zhou H (2020) Radiotherapy targeting cancer stem cells awakens them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci 12:19. https://doi.org/10.1038/s41368-020-00087-0. (PMID: 10.1038/s41368-020-00087-0325768177311531)
Feng X, Luo Q, Zhang H, Wang H, Chen W, Meng G, Chen F (2017) The role of NLRP3 inflammasome in 5-fluorouracil resistance of oral squamous cell carcinoma. J Exp Clin Cancer Res 36:81. https://doi.org/10.1186/s13046-017-0553-x. (PMID: 10.1186/s13046-017-0553-x286374935479028)
Paul R, Dorsey JF, Fan Y (2022) Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. Pharmacol Ther 231:107985. https://doi.org/10.1016/j.pharmthera.2021.107985. (PMID: 10.1016/j.pharmthera.2021.10798534480963)
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova (2018) I.-I. therapy resistance mediated by cancer stem cells. Semin Cancer Biol 53:156–167. https://doi.org/10.1016/j.semcancer.2018.11.006. (PMID: 10.1016/j.semcancer.2018.11.00630471331)
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng S-Y (2020) Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 10:8721–8743. https://doi.org/10.7150/thno.41648. (PMID: 10.7150/thno.41648327542747392012)
Prasad S, Ramachandran S, Gupta N, Kaushik I, Srivastava SK (2020) Cancer cells stemness: a doorstep to targeted therapy. Biochim Biophys Acta Mol Basis Dis 1866:165424. https://doi.org/10.1016/j.bbadis.2019.02.019. (PMID: 10.1016/j.bbadis.2019.02.01930818002)
Annett S, Robson T (2018) Targeting cancer stem cells in the clinic: current status and perspectives. Pharmacol Ther 187:13–30. https://doi.org/10.1016/j.pharmthera.2018.02.001. (PMID: 10.1016/j.pharmthera.2018.02.00129421575)
Cole AJ, Fayomi AP, Anyaeche VI, Bai S, Buckanovich RJ (2020) An evolving paradigm of cancer stem cell hierarchies: therapeutic implications. Theranostics 10:3083–3098. https://doi.org/10.7150/thno.41647. (PMID: 10.7150/thno.41647321948567053211)
Jang T-H, Huang W-C, Tung S-L, Lin S-C, Chen P-M, Cho C-Y, Yang Y-Y, Yen T-C, Lo G-H, Chuang S-E et al (2022) MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J Biomed Sci 29. https://doi.org/10.1186/s12929-022-00824-z.
Zeng L, Zhu Y, Moreno CS, Wan Y (2023) New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 90:29–44. https://doi.org/10.1016/j.semcancer.2023.02.003. (PMID: 10.1016/j.semcancer.2023.02.0033680656010023514)
Wang R, Yu W, Zhu T, Lin F, Hua C, Ru L, Guo P, Wan X, Xue G, Guo Z et al (2023) MED27 plays a tumor-promoting role in breast cancer progression by targeting KLF4. Cancer Sci 114:2277–2292. https://doi.org/10.1111/cas.15757. (PMID: 10.1111/cas.157573678652710236612)
Lee Y, Yoon J, Ko D, Yu M, Lee S, Kim S (2021) TMPRSS4 promotes cancer stem-like properties in prostate cancer cells through upregulation of SOX2 by SLUG and TWIST1. J Exp Clin Cancer Res 40:372. https://doi.org/10.1186/s13046-021-02147-7. (PMID: 10.1186/s13046-021-02147-7348096698607621)
He Z, He J, Xie K (2023) KLF4 transcription factor in tumorigenesis. Cell Death Discov 9:118. https://doi.org/10.1038/s41420-023-01416-y. (PMID: 10.1038/s41420-023-01416-y3703119710082813)
Zhang P, Andrianakos R, Yang Y, Liu C, Lu W (2010) Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating nanog gene expression. J Biol Chem 285:9180–9189. https://doi.org/10.1074/jbc.M109.077958. (PMID: 10.1074/jbc.M109.077958200713442838337)
Tong Z, Solanki A, Hamilos A, Levy O, Wen K, Yin X, Karp JM (2015) Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J 34. https://doi.org/10.15252/embj.201490756.
Qi X-T, Li Y-L, Zhang Y-Q, Xu T, Lu B, Fang L, Gao J-Q, Yu L-S, Zhu D-F, Yang B et al (2019) KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacol Sin 40:546–555. https://doi.org/10.1038/s41401-018-0050-6. (PMID: 10.1038/s41401-018-0050-629930276)
Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M (2020) Targeting EphA2 in cancer. J Hematol Oncol 13:114. https://doi.org/10.1186/s13045-020-00944-9. (PMID: 10.1186/s13045-020-00944-9328115127433191)
Wilson K, Shiuan E, Brantley-Sieders DM (2021) Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 40:2483–2495. https://doi.org/10.1038/s41388-021-01714-8. (PMID: 10.1038/s41388-021-01714-8336862418035212)
Anderton M, van der Meulen E, Blumenthal MJ, Schäfer G (2021) The role of the eph receptor family in Tumorigenesis. Cancers (Basel) 13. https://doi.org/10.3390/cancers13020206.
Zhao P, Sun J, Huang X, Zhang X, Liu X, Liu R, Du G, Gan W, Yang C, Tang Y et al (2023) Targeting the KLF5-EphA2 axis can restrain cancer stemness and overcome chemoresistance in basal-like breast cancer. Int J Biol Sci 19:1861–1874. https://doi.org/10.7150/ijbs.82567. (PMID: 10.7150/ijbs.825673706342410092769)
Shao Z, Zhang W-F, Chen X-M, Shang Z-J (2008) Expression of EphA2 and VEGF in squamous cell carcinoma of the tongue: correlation with the angiogenesis and clinical outcome. Oral Oncol 44:1110–1117. https://doi.org/10.1016/j.oraloncology.2008.01.018. (PMID: 10.1016/j.oraloncology.2008.01.01818485799)
Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78. https://doi.org/10.1016/j.jim.2009.06.008. (PMID: 10.1016/j.jim.2009.06.00819567251)
Adorno-Cruz V, Kibria G, Liu X, Doherty M, Junk DJ, Guan D, Hubert C, Venere M, Mulkearns-Hubert E, Sinyuk M et al (2015) Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res 75:924–929. https://doi.org/10.1158/0008-5472.CAN-14-3225. (PMID: 10.1158/0008-5472.CAN-14-3225256042644359955)
Saygin C, Matei D, Majeti R, Reizes O, Lathia JD (2019) Targeting Cancer Stemness in the clinic: from hype to Hope. Cell Stem Cell 24:25–40. https://doi.org/10.1016/j.stem.2018.11.017. (PMID: 10.1016/j.stem.2018.11.01730595497)
Hu J, Mirshahidi S, Simental A, Lee SC, De Andrade Filho PA, Peterson NR, Duerksen-Hughes P, Yuan X (2019) Cancer stem cell self-renewal as a therapeutic target in human oral cancer. Oncogene 38:5440–5456. https://doi.org/10.1038/s41388-019-0800-z. (PMID: 10.1038/s41388-019-0800-z30936460)
Li Y, Wang Z, Ajani JA, Song S (2021) Drug resistance and Cancer stem cells. Cell Commun Signal 19:19. https://doi.org/10.1186/s12964-020-00627-5. (PMID: 10.1186/s12964-020-00627-5335888677885480)
Chaudhary A, Raza SS, Haque R (2023) Transcriptional factors targeting in cancer stem cells for tumor modulation. Semin Cancer Biol 88:123–137. https://doi.org/10.1016/j.semcancer.2022.12.010. (PMID: 10.1016/j.semcancer.2022.12.01036603792)
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M et al (2019) Induced Pluripotent Stem cells and their use in human models of Disease and Development. Physiol Rev 99. https://doi.org/10.1152/physrev.00039.2017.
Chen J, Li H, Zhang B, Xiong Z, Jin Z, Chen J, Zheng Y, Zhu X, Zhang S (2022) ABI2-mediated MEOX2/KLF4-NANOG axis promotes liver cancer stem cell and drives tumour recurrence. Liver Int 42:2562–2576. https://doi.org/10.1111/liv.15412. (PMID: 10.1111/liv.15412360178229825985)
Leng Z, Li Y, Zhou G, Lv X, Ai W, Li J, Hou L (2020) Krüppel-like factor 4 regulates stemness and mesenchymal properties of colorectal cancer stem cells through the TGF-β1/Smad/snail pathway. J Cell Mol Med 24:1866–1877. https://doi.org/10.1111/jcmm.14882. (PMID: 10.1111/jcmm.1488231830379)
Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris Q (2018) GeneMANIA update 2018. Nucleic Acids Res 46:W60–W64. https://doi.org/10.1093/nar/gky311. (PMID: 10.1093/nar/gky311299123926030815)
Azad T, Nouri K, van Janse HJ, Maritan SM, Wu L, Hao Y, Montminy T, Yu J, Khanal P, Mulligan LM et al (2020) A gain-of-functional screen identifies the Hippo pathway as a central mediator of receptor tyrosine kinases during tumorigenesis. Oncogene 39:334–355. https://doi.org/10.1038/s41388-019-0988-y. (PMID: 10.1038/s41388-019-0988-y31477837)
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS (2022) Genomic Hippo pathway alterations and persistent YAP/TAZ activation: New Hallmarks in Head and Neck Cancer. Cells 11. https://doi.org/10.3390/cells11081370.
Castellan M, Guarnieri A, Fujimura A, Zanconato F, Battilana G, Panciera T, Sladitschek HL, Contessotto P, Citron A, Grilli A et al (2021) Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in Glioblastoma. Nat Cancer 2:174–188. https://doi.org/10.1038/s43018-020-00150-z. (PMID: 10.1038/s43018-020-00150-z33644767)
Thirusangu P, Ray U, Sarkar Bhattacharya S, Oien DB, Jin L, Staub J, Kannan N, Molina JR, Shridhar V (2022) PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene 41:4003–4017. https://doi.org/10.1038/s41388-022-02391-x. (PMID: 10.1038/s41388-022-02391-x358040169374593)
Driskill JH, Pan D (2023) Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 24:895–911. https://doi.org/10.1038/s41580-023-00644-5. (PMID: 10.1038/s41580-023-00644-537626124)
Luo J, Deng L, Zou H, Guo Y, Tong T, Huang M, Ling G, Li P (2023) New insights into the ambivalent role of YAP/TAZ in human cancers. J Exp Clin Cancer Res 42:130. https://doi.org/10.1186/s13046-023-02704-2. (PMID: 10.1186/s13046-023-02704-23721159810201886)
Imperial R, Toor OM, Hussain A, Subramanian J, Masood A (2019) Comprehensive pancancer genomic analysis reveals (RTK)-RAS-RAF-MEK as a key dysregulated pathway in cancer: its clinical implications. Semin Cancer Biol 54:14–28. https://doi.org/10.1016/j.semcancer.2017.11.016. (PMID: 10.1016/j.semcancer.2017.11.01629175106)
Chen Y-H, Lv H, Shen N, Wang X-M, Tang S, Xiong B, Ding J, Geng M-Y, Huang M (2020) EPHA2 feedback activation limits the response to PDEδ inhibition in KRAS-dependent cancer cells. Acta Pharmacol Sin 41:270–277. https://doi.org/10.1038/s41401-019-0268-y. (PMID: 10.1038/s41401-019-0268-y31316177)
Pudewell S, Ahmadian MR (2021) Spotlight on Accessory proteins: RTK-RAS-MAPK modulators as new therapeutic targets. Biomolecules 11. https://doi.org/10.3390/biom11060895.
Vališ K, Novák P (2020) Targeting ERK-Hippo interplay in Cancer Therapy. Int J Mol Sci 21. https://doi.org/10.3390/ijms21093236.
Kim JW, Luck C, Wu W, Ponce RK, Lin YK, Gupta N, Okimoto RA (2022) Capicua suppresses YAP1 to limit tumorigenesis and maintain drug sensitivity in human cancer. Cell Rep 41:111443. https://doi.org/10.1016/j.celrep.2022.111443. (PMID: 10.1016/j.celrep.2022.111443361982769674208)
Liu S, Xu X, Fang Z, Ning Y, Deng B, Pan X, He Y, Yang Z, Huang K, Li J (2021) Piezo1 impairs hepatocellular tumor growth via deregulation of the MAPK-mediated YAP signaling pathway. Cell Calcium 95:102367. https://doi.org/10.1016/j.ceca.2021.102367. (PMID: 10.1016/j.ceca.2021.10236733610907)
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang C-Y, Chinnaiyan AM et al (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–1971. https://doi.org/10.1101/gad.1664408. (PMID: 10.1101/gad.1664408185797502492741)
Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–1305. https://doi.org/10.1101/gad.192856.112. (PMID: 10.1101/gad.192856.112226775473387657)
Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47:W556–W560. https://doi.org/10.1093/nar/gkz430. (PMID: 10.1093/nar/gkz430311148756602440)
Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, Lucas J, Boddie P, Khan A, Manosalva Pérez N et al (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50:D165–D173. https://doi.org/10.1093/nar/gkab1113. (PMID: 10.1093/nar/gkab111334850907)
Naik PP, Das DN, Panda PK, Mukhopadhyay S, Sinha N, Praharaj PP, Agarwal R, Bhutia SK (2016) Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncol 62:122–135. https://doi.org/10.1016/j.oraloncology.2016.10.008. (PMID: 10.1016/j.oraloncology.2016.10.00827865365)
Simple M, Suresh A, Das D, Kuriakose MA (2015) Cancer stem cells and field cancerization of oral squamous cell carcinoma. Oral Oncol 51:643–651. https://doi.org/10.1016/j.oraloncology.2015.04.006. (PMID: 10.1016/j.oraloncology.2015.04.00625920765)
Tsai F-J, Lai M-T, Cheng J, Chao SC-C, Korla PK, Chen H-J, Lin C-M, Tsai M-H, Hua C-H, Jan C-I et al (2019) Novel K6-K14 keratin fusion enhances cancer stemness and aggressiveness in oral squamous cell carcinoma. Oncogene 38:5113–5126. https://doi.org/10.1038/s41388-019-0781-y. (PMID: 10.1038/s41388-019-0781-y30867567)
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH (2020) Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol 235:790–803. https://doi.org/10.1002/jcp.29044. (PMID: 10.1002/jcp.2904431286518)
Bu J, Zhang Y, Wu S, Li H, Sun L, Liu Y, Zhu X, Qiao X, Ma Q, Liu C et al (2023) KK-LC-1 as a therapeutic target to eliminate ALDH + stem cells in triple negative breast cancer. Nat Commun 14:2602. https://doi.org/10.1038/s41467-023-38097-1. (PMID: 10.1038/s41467-023-38097-13714728510163259)
Husain A, Chiu Y-T, Sze KM-F, Ho DW-H, Tsui Y-M, Suarez EMS, Zhang VX, Chan L-K, Lee E, Lee JM-F et al (2022) Ephrin-A3/EphA2 axis regulates cellular metabolic plasticity to enhance cancer stemness in hypoxic hepatocellular carcinoma. J Hepatol 77:383–396. https://doi.org/10.1016/j.jhep.2022.02.018. (PMID: 10.1016/j.jhep.2022.02.01835227773)
Primeaux M, Liu X, Gowrikumar S, Fatima I, Fisher KW, Bastola D, Vecchio AJ, Singh AB, Dhawan P (2023) Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett 579:216479. https://doi.org/10.1016/j.canlet.2023.216479. (PMID: 10.1016/j.canlet.2023.21647937924938)
Tsompana M, Gluck C, Sethi I, Joshi I, Bard J, Nowak NJ, Sinha S, Buck MJ (2020) Reactivation of super-enhancers by KLF4 in human Head and Neck squamous cell carcinoma. Oncogene 39:262–277. https://doi.org/10.1038/s41388-019-0990-4. (PMID: 10.1038/s41388-019-0990-431477832)
Zheng TL, Cen K (2020) MiR-92a inhibits proliferation and promotes apoptosis of OSCC cells through Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 24:4803–4809. https://doi.org/10.26355/eurrev_202005_21169. (PMID: 10.26355/eurrev_202005_2116932432743)
Ma S, Meng Z, Chen R, Guan K-L (2019) The Hippo Pathway: Biology and Pathophysiology. Annu Rev Biochem 88:577–604. https://doi.org/10.1146/annurev-biochem-013118-111829. (PMID: 10.1146/annurev-biochem-013118-11182930566373)
Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LSB, Abujarour R et al (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24:1106–1118. https://doi.org/10.1101/gad.1903310. (PMID: 10.1101/gad.1903310205161962878649)
Pobbati AV, Hong W (2020) A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics 10:3622–3635. https://doi.org/10.7150/thno.40889. (PMID: 10.7150/thno.40889322061127069086)
Crawford JJ, Bronner SM, Zbieg JR (2018) Hippo pathway inhibition by blocking the YAP/TAZ-TEAD interface: a patent review. Expert Opin Ther Pat 28:867–873. https://doi.org/10.1080/13543776.2018.1549226. (PMID: 10.1080/13543776.2018.154922630482112)
Zagiel B, Melnyk P, Cotelle P (2022) Progress with YAP/TAZ-TEAD inhibitors: a patent review (2018-present). Expert Opin Ther Pat 32:899–912. https://doi.org/10.1080/13543776.2022.2096436. (PMID: 10.1080/13543776.2022.209643635768160)
Azad T, Rezaei R, Surendran A, Singaravelu R, Boulton S, Dave J, Bell JC, Ilkow CS (2020) Hippo Signaling Pathway as a Central Mediator of receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers (Basel) 12. https://doi.org/10.3390/cancers12082042.
Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, Reynolds AB, Chen J (2017) The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal 10. https://doi.org/10.1126/scisignal.aan4667.
معلومات مُعتمدة: 82373093 National Natural Science Foundation of China; 82273306 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Cancer stem cells; EphA2; KLF4; OSCC; YAP
المشرفين على المادة: 0 (Kruppel-Like Factor 4)
0 (KLF4 protein, human)
EC 2.7.10.1 (Receptor, EphA2)
0 (Kruppel-Like Transcription Factors)
0 (EPHA2 protein, human)
0 (Klf4 protein, mouse)
0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20240625 Date Completed: 20240625 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1007/s00018-024-05325-w
PMID: 38916835
قاعدة البيانات: MEDLINE
الوصف
تدمد:1420-9071
DOI:10.1007/s00018-024-05325-w