دورية أكاديمية

Dog leukocyte antigen genotyping across class I and class II genes in beagle dogs as laboratory animals.

التفاصيل البيبلوغرافية
العنوان: Dog leukocyte antigen genotyping across class I and class II genes in beagle dogs as laboratory animals.
المؤلفون: Konno H; Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan. hiroya.konno@daiichisankyo.com., Miyamae J; Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Japan., Kataoka H; Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan., Akai M; Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan., Miida H; Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan., Tsuchiya Y; Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan.
المصدر: Immunogenetics [Immunogenetics] 2024 Aug; Vol. 76 (4), pp. 261-270. Date of Electronic Publication: 2024 Jun 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: United States NLM ID: 0420404 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1211 (Electronic) Linking ISSN: 00937711 NLM ISO Abbreviation: Immunogenetics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Springer Verlag,
مواضيع طبية MeSH: Models, Animal* , Dogs*/genetics , Genes, MHC Class I*/genetics , Genes, MHC Class II*/genetics , Genotype*, Animals ; Genetic Variation ; Haplotypes ; Homozygote ; Species Specificity
مستخلص: Dog leukocyte antigen (DLA) polymorphisms have been found to be associated with inter-individual variations in the risk, susceptibility, and severity of immune-related phenomena. While DLA class II genes have been extensively studied, less research has been performed on the polymorphisms of DLA class I genes, especially in beagle dogs commonly used as laboratory animals for safety evaluations in drug development. We genotyped four DLA class I genes and four DLA class II genes by locus-specific Sanger sequencing using 93 laboratory beagle dogs derived from two different strains: TOYO and Marshall. The results showed that, for DLA class I genes, 11, 4, 1, and 2 alleles, including a novel allele, were detected in DLA-88, DLA-12/88L, DLA-64, and DLA-79, while, for DLA class II genes, 1, 10, 6, and 7 alleles were detected in DLA-DRA, DLA-DRB1, DLA-DQA1, and DLA-DQB1, respectively. It was estimated that there were 14 DLA haplotypes, six of which had a frequency of ≥ 5%. Furthermore, when comparing the DLA diversity between TOYO and Marshall strains, the most common alleles and haplotypes differed between them. This is the first study to genotype all DLA loci and determine DLA haplotypes including all DLA class I and class II genes in dogs. Integrating information on the DLA diversity of laboratory beagle dogs should reinforce their benefit as an animal model for understanding various diseases associated with a specific DLA type.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Alelign T, Ahmed MM, Bobosha K, Tadesse Y, Howe R, Petros B (2018) Kidney transplantation: the challenge of human leukocyte antigen and its therapeutic strategies. J Immunol Res 2018:5986740. https://doi.org/10.1155/2018/5986740. (PMID: 10.1155/2018/5986740296930235859822)
Arrieta-Bolaños E, Hernández-Zaragoza DI, Barquera R (2023) An HLA map of the world: a comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet 14:866407. https://doi.org/10.3389/fgene.2023.866407. (PMID: 10.3389/fgene.2023.8664073703573510076764)
Brekke TD, Steele KA, Mulley JF (2018) Inbred or outbred? Genetic Diversity in Laboratory Rodent Colonies. G3 (Bethesda) 8:679–686. https://doi.org/10.1534/g3.117.300495. (PMID: 10.1534/g3.117.30049529242387)
Cresswell P (2019) A personal retrospective on the mechanisms of antigen processing. Immunogenetics 71:141–160. https://doi.org/10.1007/s00251-018-01098-2. (PMID: 10.1007/s00251-018-01098-2306943446461365)
Debenham SL, Hart EA, Ashurst JL, Howe KL, Quail MA, Ollier WER, Binns MM (2005) Genomic sequence of the class II region of the canine MHC: comparison with the MHC of other mammalian species. Genomics 85:48–59. https://doi.org/10.1016/j.ygeno.2004.09.009. (PMID: 10.1016/j.ygeno.2004.09.00915607421)
Dendrou CA, Petersen J, Rossjohn J, Fugger L (2018) HLA variation and disease. Nat Rev Immunol 18:325–339. https://doi.org/10.1038/nri.2017.143. (PMID: 10.1038/nri.2017.14329292391)
Dorso L, Chanut F, Howroyd P, Burnett R (2008) Variability in weight and histological appearance of the prostate of beagle dogs used in toxicology studies. Toxicol Pathol 36:917–925. https://doi.org/10.1177/0192623308324958. (PMID: 10.1177/019262330832495818827073)
Furukawa H, Oka S, Shimada K, Hashimoto A, Tohma S (2015) Human leukocyte antigen polymorphisms and personalized medicine for rheumatoid arthritis. J Hum Genet 60:691–696. https://doi.org/10.1038/jhg.2015.36. (PMID: 10.1038/jhg.2015.3625903069)
Gabriel C, Fürst D, Faé I, Wenda S, Zollikofer C, Mytilineos J, Fischer GF (2014) HLA typing by next-generation sequencing - getting closer to reality. Tissue Antigens 83:65–75. https://doi.org/10.1111/tan.12298. (PMID: 10.1111/tan.1229824447174)
Germain RN, Bentley DM, Quill H (1985) Influence of allelic polymorphism on the assembly and surface expression of class II MHC (Ia) molecules. Cell 43:233–242. https://doi.org/10.1016/0092-8674(85)90028-5. (PMID: 10.1016/0092-8674(85)90028-53935317)
Gershony LC, Belanger JM, Short AD, Le M, Hytönen MK, Lohi H, Famula TR, Kennedy LJ, Oberbauer AM (2019) DLA class II risk haplotypes for autoimmune diseases in the bearded collie offer insight to autoimmunity signatures across dog breeds. Canine Genet Epidemiol 6:2. https://doi.org/10.1186/s40575-019-0070-7. (PMID: 10.1186/s40575-019-0070-7307835346376674)
Graves SS, Hogan W, Georges GE, Kuhr C, Diaconescu R, Harkey M, Zellmer E, Storb R (2006) Establishment of trichimerism in the dog leukocyte antigen (DLA)-identical canine hematopoietic transplant model. Blood 108:3193–3193. https://doi.org/10.1182/blood.V108.11.3193.3193. (PMID: 10.1182/blood.V108.11.3193.3193)
Imatoh T, Ushiki A, Ota M, Ito M, Sekine A, Yamashita T, Mashimo Y, Nakamura R, Saito K, Saito Y, Hanaoka M (2020) Association of HLA-DRB1*04:05 allele with drug-induced interstitial lung disease in Japanese population. Pharmacogenomics J 20:823–830. https://doi.org/10.1038/s41397-020-0172-3. (PMID: 10.1038/s41397-020-0172-332467566)
Jeiziner C, Wernli U, Suter K, Hersberger KE, Meyer zu Schwabedissen HE, (2021) HLA-associated adverse drug reactions - scoping review. Clin Transl Sci 14:1648–1658. https://doi.org/10.1111/cts.13062. (PMID: 10.1111/cts.13062341058778504845)
Kawamura T, Miyagawa S, Fukushima S, Maeda A, Kashiyama N, Kawamura A, Miki K, Okita K, Yoshida Y, Shiina T, Ogasawara K, Miyagawa S, Toda K, Okuyama H, Sawa Y (2016) Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem Cell Reports 6:312–320. https://doi.org/10.1016/j.stemcr.2016.01.012. (PMID: 10.1016/j.stemcr.2016.01.012269051984788782)
Kennedy LJ, Angles JM, Barnes A, Carmichael LE, Radford AD, Ollier WER, Happ GM (2007) DLA-DRB1, DQA1, and DQB1 alleles and haplotypes in North American gray wolves. J Hered 98:491–499. https://doi.org/10.1093/jhered/esm051. (PMID: 10.1093/jhered/esm05117611255)
Kennedy LJ, Barnes A, Happ GM, Quinnell RJ, Bennett D, Angles JM, Day MJ, Carmichael N, Innes JF, Isherwood D, Carter SD, Thomson W, Ollier WER (2002) Extensive interbreed, but minimal intrabreed, variation of DLA class II alleles and haplotypes in dogs. Tissue Antigens 59:194–204. https://doi.org/10.1034/j.1399-0039.2002.590303.x. (PMID: 10.1034/j.1399-0039.2002.590303.x12074709)
Kennedy LJ, Davison LJ, Barnes A, Short AD, Fretwell N, Jones CA, Lee AC, Ollier WE, Catchpole B (2006a) Identification of susceptibility and protective major histocompatibility complex haplotypes in canine diabetes mellitus. Tissue Antigens 68:467–476. https://doi.org/10.1111/j.1399-0039.2006.00716.x. (PMID: 10.1111/j.1399-0039.2006.00716.x17176436)
Kennedy LJ, Huson HJ, Leonard J, Angles JM, Fox LE, Wojciechowski JW, Yuncker C, Happ GM (2006b) Association of hypothyroid disease in Doberman Pinscher dogs with a rare major histocompatibility complex DLA class II haplotype. Tissue Antigens 67:53–56. https://doi.org/10.1111/j.1399-0039.2005.00518.x. (PMID: 10.1111/j.1399-0039.2005.00518.x16451201)
Kennedy LJ, Ollier W, Marti E, Wagner JL, Storb RF (2012) In: Ruvinsky A, Ostrander E (eds) The genetics of the dog, 2nd, edition edn. . CAB International, Wallingford. https://doi.org/10.1079/9781845939403.0091.
Kennedy LJ, Quarmby S, Happ GM, Barnes A, Ramsey IK, Dixon RM, Catchpole B, Rusbridge C, Graham PA, Hillbertz NS, Roethel C, Dodds WJ, Carmichael NG, Ollier WE (2006c) Association of canine hypothyroidism with a common major histocompatibility complex DLA class II allele. Tissue Antigens 68:82–86. https://doi.org/10.1111/j.1399-0039.2006.00614.x. (PMID: 10.1111/j.1399-0039.2006.00614.x16774545)
Kimura M, Maruyama T, Crow JF (1963) The mutation load in small populations. Genetics 48:1303–1312. https://doi.org/10.1093/genetics/48.10.1303. (PMID: 10.1093/genetics/48.10.1303140717531210420)
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT (2016) Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 11:19. https://doi.org/10.1186/s13018-016-0346-5. (PMID: 10.1186/s13018-016-0346-5268379514738796)
Li ZZ, Zou YP, Zhu H, Zeng WZ, Ding Y, Su JZ, Yu GY (2023) Establishment of a Beagle Dog Model of Dry Eye Disease. Transl vis Sci Technol 12:2. https://doi.org/10.1167/tvst.12.1.2. (PMID: 10.1167/tvst.12.1.2365952799819666)
Maccari G, Robinson J, Bontrop RE, Otting N, de Groot NG, Ho CS, Ballingall KT, Marsh SGE, Hammond JA (2018) IPD-MHC: nomenclature requirements for the non-human major histocompatibility complex in the next-generation sequencing era. Immunogenetics 70:619–623. https://doi.org/10.1007/s00251-018-1072-4. (PMID: 10.1007/s00251-018-1072-4300272996182402)
Maltecca C, Tiezzi F, Cole JB, Baes C (2020) Symposium review: exploiting homozygosity in the era of genomics—Selection, inbreeding, and mating programs. J Dairy Sci 103:5302–5313. https://doi.org/10.3168/jds.2019-17846. (PMID: 10.3168/jds.2019-1784632331889)
Marsden CD, Ortega-Del Vecchyo D, O’Brien DP, Taylor JF, Ramirez O, Vilà C, Marques-Bonet T, Schnabel RD, Wayne RK, Lohmueller KE (2016) Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci 113:152–157. https://doi.org/10.1073/pnas.1512501113. (PMID: 10.1073/pnas.151250111326699508)
Medhasi S, Chantratita N (2022) Human leukocyte antigen (HLA) system: genetics and association with bacterial and viral infections. J Immunol Res 2022:9710376. https://doi.org/10.1155/2022/9710376. (PMID: 10.1155/2022/9710376356643539162874)
Miyamae J, Okano M, Katakura F, Kulski JK, Moritomo T, Shiina T (2023) Large-scale polymorphism analysis of dog leukocyte antigen class I and class II genes (DLA-88, DLA-12/88L and DLA-DRB1) and comparison of the haplotype diversity between breeds in Japan. Cells. https://doi.org/10.3390/cells12050809. (PMID: 10.3390/cells120508093689994510001263)
Miyamae J, Okano M, Nishiya K, Katakura F, Kulski JK, Moritomo T, Shiina T (2022) Haplotype structures and polymorphisms of dog leukocyte antigen (DLA) class I loci shaped by intralocus and interlocus recombination events. Immunogenetics 74:245–259. https://doi.org/10.1007/s00251-021-01234-5. (PMID: 10.1007/s00251-021-01234-534993565)
Miyamae J, Suzuki S, Katakura F, Uno S, Tanaka M, Okano M, Matsumoto T, Kulski JK, Moritomo T, Shiina T (2018) Identification of novel polymorphisms and two distinct haplotype structures in dog leukocyte antigen class I genes: DLA-88, DLA-12 and DLA-64. Immunogenetics 70:237–255. https://doi.org/10.1007/s00251-017-1031-5. (PMID: 10.1007/s00251-017-1031-528951951)
Morizane A, Kikuchi T, Hayashi T, Mizuma H, Takara S, Doi H, Mawatari A, Glasser MF, Shiina T, Ishigaki H, Itoh Y, Okita K, Yamasaki E, Doi D, Onoe H, Ogasawara K, Yamanaka S, Takahashi J (2017) MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat Commun 8:385. https://doi.org/10.1038/s41467-017-00926-5. (PMID: 10.1038/s41467-017-00926-5288555095577234)
Mounzer K, Hsu R, Fusco JS, Brunet L, Henegar CE, Vannappagari V, Stainsby CM, Shaefer MS, Ragone L, Fusco GP (2019) HLA-B*57:01 screening and hypersensitivity reaction to abacavir between 1999 and 2016 in the OPERA(®) observational database: a cohort study. AIDS Res Ther 16:1. https://doi.org/10.1186/s12981-019-0217-3. (PMID: 10.1186/s12981-019-0217-3306511006334426)
Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98. https://doi.org/10.1038/246096a0. (PMID: 10.1038/246096a04585855)
Ollier WE, Kennedy LJ, Thomson W, Barnes AN, Bell SC, Bennett D, Angles JM, Innes JF, Carter SD (2001) Dog MHC alleles containing the human RA shared epitope confer susceptibility to canine rheumatoid arthritis. Immunogenetics 53:669–673. https://doi.org/10.1007/s002510100372. (PMID: 10.1007/s00251010037211797101)
Perneger TV (1998) What’s Wrong with Bonferroni Adjustments. Bmj 316:1236–1238. https://doi.org/10.1136/bmj.316.7139.1236. (PMID: 10.1136/bmj.316.7139.123695530061112991)
Prior H, Bottomley A, Champéroux P, Cordes J, Delpy E, Dybdal N, Edmunds N, Engwall M, Foley M, Hoffmann M, Kaiser R, Meecham K, Milano S, Milne A, Nelson R, Roche B, Valentin JP, Ward G, Chapman K (2016) Social housing of non-rodents during cardiovascular recordings in safety pharmacology and toxicology studies. J Pharmacol Toxicol Methods 81:75–87. https://doi.org/10.1016/j.vascn.2016.03.004. (PMID: 10.1016/j.vascn.2016.03.004270392575056765)
Prior H, Haworth R, Labram B, Roberts R, Wolfreys A, Sewell F (2020) Justification for species selection for pharmaceutical toxicity studies. Toxicol Res (camb) 9:758–770. https://doi.org/10.1093/toxres/tfaa081. (PMID: 10.1093/toxres/tfaa08133442468)
Quinnell RJ, Kennedy LJ, Barnes A, Courtenay O, Dye C, Garcez LM, Shaw MA, Carter SD, Thomson W, Ollier WE (2003) Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics 55:23–28. https://doi.org/10.1007/s00251-003-0545-1. (PMID: 10.1007/s00251-003-0545-112715244)
Roche PA, Furuta K (2015) The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15:203–216. https://doi.org/10.1038/nri3818. (PMID: 10.1038/nri3818257203546314495)
Ross P, Holmes JC, Gojanovich GS, Hess PR (2012) A cell-based MHC stabilization assay for the detection of peptide binding to the canine classical class I molecule, DLA-88. Vet Immunol Immunopathol 150:206–212. https://doi.org/10.1016/j.vetimm.2012.08.012. (PMID: 10.1016/j.vetimm.2012.08.012230628013494747)
Santoro D, Marsella R (2014) Animal models of allergic diseases. Veterinary Sciences 1:192–212. https://doi.org/10.3390/vetsci1030192. (PMID: 10.3390/vetsci1030192)
Sato K, Miyamae J, Sakai M, Okano M, Katakura F, Shibuya H, Nakayama T, Moritomo T (2020) The utility of DLA typing for transplantation medicine in canine models. J Vet Med Sci 82:1138–1145. https://doi.org/10.1292/jvms.20-0142. (PMID: 10.1292/jvms.20-0142326245497468067)
Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538:388–391. https://doi.org/10.1038/nature19815. (PMID: 10.1038/nature1981527723741)
Shiina T, Blancher A (2019) The cynomolgus macaque MHC polymorphism in experimental medicine. Cells.
Silver ZA, Watkins DI (2017) The role of MHC class I gene products in SIV infection of macaques. Immunogenetics 69:511–519. https://doi.org/10.1007/s00251-017-0997-3. (PMID: 10.1007/s00251-017-0997-3286952895537376)
Simmonds JM, Gough CLS (2007) The HLA region and autoimmune disease: associations and mechanisms of action. Curr Genomics 8:453–465. https://doi.org/10.2174/138920207783591690. (PMID: 10.2174/138920207783591690194124182647156)
Soutter F, Kennedy LJ, Ollier WER, Solano-Gallego L, Catchpole B (2015) Restricted dog leucocyte antigen (DLA) class II haplotypes and genotypes in Beagles. Vet J 203:345–347. https://doi.org/10.1016/j.tvjl.2014.12.032. (PMID: 10.1016/j.tvjl.2014.12.032256340814366010)
Soutter F, Martorell S, Solano-Gallego L, Catchpole B (2018) Inconsistent MHC class II association in beagles experimentally infected with Leishmania infantum. Vet J 235:9–15. https://doi.org/10.1016/j.tvjl.2018.03.001. (PMID: 10.1016/j.tvjl.2018.03.00129704945)
Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169. https://doi.org/10.1086/379378. (PMID: 10.1086/379378145746451180495)
Stromberg SJ, Thomasy SM, Marangakis AD, Kim S, Cooper AE, Brown EA, Maggs DJ, Bannasch DL (2019) Evaluation of the major histocompatibility complex (MHC) class II as a candidate for sudden acquired retinal degeneration syndrome (SARDS) in Dachshunds. Vet Ophthalmol 22:751–759. https://doi.org/10.1111/vop.12646. (PMID: 10.1111/vop.12646307912056703976)
Venkataraman GM, Geraghty D, Fox J, Graves SS, Zellmer E, Storer BE, Torok-Storb BJ, Storb R (2013) Canine DLA-79 gene: an improved typing method, identification of new alleles and its role in graft rejection and graft-versus-host disease. Tissue Antigens 81:204–211. https://doi.org/10.1111/tan.12094. (PMID: 10.1111/tan.12094235104163605710)
Wagner JL, Burnett RC, Works JD, Storb R (1996) Molecular analysis of DLA-DRBB1 polymorphism. Tissue Antigens 48:554–561. https://doi.org/10.1111/j.1399-0039.1996.tb02669.x. (PMID: 10.1111/j.1399-0039.1996.tb02669.x8988538)
Wagner JL, Hayes-Lattin B, Works JD, Storb R (1998) Molecular analysis and polymorphism of the DLA-DQB genes. Tissue Antigens 52:242–250. https://doi.org/10.1111/j.1399-0039.1998.tb03039.x. (PMID: 10.1111/j.1399-0039.1998.tb03039.x9802604)
Wu H, Whritenour J, Sanford JC, Houle C, Adkins KK (2017) Identification of MHC haplotypes associated with drug-induced hypersensitivity reactions in cynomolgus monkeys. Toxicol Pathol 45:127–133. https://doi.org/10.1177/0192623316677326. (PMID: 10.1177/019262331667732627879435)
فهرسة مساهمة: Keywords: Beagle dog; Dog leukocyte antigen (DLA); Laboratory animal; Polymorphism
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240715 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1007/s00251-024-01344-w
PMID: 38922357
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1211
DOI:10.1007/s00251-024-01344-w