دورية أكاديمية

Parental Exposure to Morphine Before Conception Decreases Morphine and Cocaine-Induced Locomotor Sensitization in Male Offspring.

التفاصيل البيبلوغرافية
العنوان: Parental Exposure to Morphine Before Conception Decreases Morphine and Cocaine-Induced Locomotor Sensitization in Male Offspring.
المؤلفون: Heidari A; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran., Hajikarim-Hamedani A; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran., Hosseindoost S; Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran., Ghane Y; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran., Sadat-Shirazi M; Development, Molecular & Chemical Biology, Tufts University, Boston, Massachusetts, USA., Zarrindast MR; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
المصدر: Developmental psychobiology [Dev Psychobiol] 2024 Sep; Vol. 66 (6), pp. e22514.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Interscience Country of Publication: United States NLM ID: 0164074 Publication Model: Print Cited Medium: Internet ISSN: 1098-2302 (Electronic) Linking ISSN: 00121630 NLM ISO Abbreviation: Dev Psychobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley Interscience
Original Publication: New York, Interscience Publishers.
مواضيع طبية MeSH: Morphine*/pharmacology , Morphine*/administration & dosage , Cocaine*/pharmacology , Cocaine*/administration & dosage , Prenatal Exposure Delayed Effects*/physiopathology , Prenatal Exposure Delayed Effects*/chemically induced , Rats, Wistar* , Receptors, Dopamine D2*/metabolism , Receptors, Dopamine D2*/drug effects , Nucleus Accumbens*/drug effects , Nucleus Accumbens*/metabolism , Prefrontal Cortex*/drug effects , Prefrontal Cortex*/metabolism , Locomotion*/drug effects, Animals ; Female ; Male ; Pregnancy ; Rats ; Behavior, Animal/drug effects ; Behavior, Animal/physiology ; Narcotics/pharmacology ; Paternal Exposure/adverse effects ; Dopamine Uptake Inhibitors/pharmacology ; Dopamine Uptake Inhibitors/administration & dosage ; Motor Activity/drug effects ; Motor Activity/physiology
مستخلص: Repeated exposure to abused drugs leads to reorganizing synaptic connections in the brain, playing a pivotal role in the relapse process. Additionally, recent research has highlighted the impact of parental drug exposure before gestation on subsequent generations. This study aimed to explore the influence of parental morphine exposure 10 days prior to pregnancy on drug-induced locomotor sensitization. Adult male and female Wistar rats were categorized into morphine-exposed and control groups. Ten days after their last treatment, they were mated, and their male offspring underwent morphine, methamphetamine, cocaine, and nicotine-induced locomotor sensitization tests. The results indicated increased locomotor activity in both groups after drug exposure, although the changes were attenuated in morphine and cocaine sensitization among the offspring of morphine-exposed parents (MEPs). Western blotting analysis revealed altered levels of D2 dopamine receptors (D2DRs) in the prefrontal cortex and nucleus accumbens of the offspring from MEPs. Remarkably, despite not having direct in utero drug exposure, these offspring exhibited molecular alterations affecting morphine and cocaine-induced sensitization. The diminished sensitization to morphine and cocaine suggested the development of a tolerance phenotype in these offspring. The changes in D2DR levels in the brain might play a role in these adaptations.
(© 2024 Wiley Periodicals LLC.)
References: Akbarabadi, A., S. Niknamfar, N. Vousooghi, M. S. Sadat‐Shirazi, H. Toolee, and M. R. Zarrindast. 2018. “Effect of Rat Parental Morphine Exposure on Passive Avoidance Memory and Morphine Conditioned Place Preference in Male Offspring.” Physiology & Behavior 184: 143–149. https://doi.org/10.1016/j.physbeh.2017.11.024.
Barrow, T. M., H. M. Byun, X. Li, et al. 2017. “The Effect of Morphine upon DNA Methylation in Ten Regions of the Rat Brain.” Epigenetics 12, no. 12: 1038–1047. https://doi.org/10.1080/15592294.2017.1398296.
Bayassi‐Jakowicka, M., G. Lietzau, E. Czuba, C. Patrone, and P. Kowianski. 2022. “More than Addiction—The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases.” International Journal of Molecular Sciences 23, no. 5: 2618–2637. https://doi.org/10.3390/ijms23052618.
Blum, K., T. J. Chen, B. W. Downs, et al. 2009. “Neurogenetics of Dopaminergic Receptor Supersensitivity in Activation of Brain Reward Circuitry and Relapse: Proposing “Deprivation‐Amplification Relapse Therapy” (DART).” Postgraduate Medicine 121, no. 6: 176–196. https://doi.org/10.3810/pgm.2009.11.2087.
Bobzean, S. A., A. K. DeNobrega, and L. I. Perrotti. 2014. “Sex Differences in the Neurobiology of Drug Addiction.” Experimental Neurology 259: 64–74. https://doi.org/10.1016/j.expneurol.2014.01.022.
Boileau, I., A. Dagher, M. Leyton, et al. 2006. “Modeling Sensitization to Stimulants in Humans: An [11C]Raclopride/Positron Emission Tomography Study in Healthy Men.” Archives of General Psychiatry 63, no. 12: 1386–1395. https://doi.org/10.1001/archpsyc.63.12.1386.
Botia, B., R. Legastelois, S. Alaux‐Cantin, and M. Naassila. 2012. “Expression of Ethanol‐Induced Behavioral Sensitization is Associated with Alteration of Chromatin Remodeling in Mice.” PLoS ONE 7, no. 10: e47527. https://doi.org/10.1371/journal.pone.0047527.
Byrnes, E. M. 2005. “Transgenerational Consequences of Adolescent Morphine Exposure in Female Rats: Effects on Anxiety‐Like Behaviors and Morphine Sensitization in Adult Offspring.” Psychopharmacology 182, no. 4: 537–544. https://doi.org/10.1007/s00213‐005‐0122‐4.
Byrnes, J. J., J. A. Babb, V. F. Scanlan, and E. M. Byrnes. 2011. “Adolescent Opioid Exposure in Female Rats: Transgenerational Effects on Morphine Analgesia and Anxiety‐Like Behavior in Adult Offspring.” Behavioural Brain Research 218, no. 1: 200–205. https://doi.org/10.1016/j.bbr.2010.11.059.
Carroll, M. E., U. C. Campbell, and P. Heideman. 2001. “Ketoconazole Suppresses Food Restriction‐Induced Increases in Heroin Self‐Administration in Rats: Sex Differences.” Experimental and Clinical Psychopharmacology 9, no. 3: 307–316. https://doi.org/10.1037//1064‐1297.9.3.307.
Cook, J. L. 2022. “The Opioid Epidemic.” Best Practice & Research Clinical Obstetrics & Gynaecology 85, no. Pt B: 53–58. https://doi.org/10.1016/j.bpobgyn.2022.07.003.
Crippens, D., and T. E. Robinson. 1994. “Withdrawal from Morphine or Amphetamine: Different Effects on Dopamine in the Ventral‐Medial Striatum Studied with Microdialysis.” Brain Research 650, no. 1: 56–62. https://doi.org/10.1016/0006‐8993(94)90206‐2.
Dazzi, L., G. Talani, F. Biggio, et al. 2014. “Involvement of the Cannabinoid CB1 Receptor in Modulation of Dopamine Output in the Prefrontal Cortex Associated with Food Restriction in Rats.” PLoS ONE 9, no. 3: e92224. https://doi.org/10.1371/journal.pone.0092224.
Fattore, L., S. Altea, and W. Fratta. 2008. “Sex Differences in Drug Addiction: A Review of Animal and Human Studies.” Womens Health (London) 4: 51–65. https://doi.org/10.2217/17455057.4.1.51.
Feltenstein, M. W., R. E. See, and R. A. Fuchs. 2021. “Neural Substrates and Circuits of Drug Addiction.” Cold Spring Harbor Perspectives in Medicine 11, no. 4: 1–24. https://doi.org/10.1101/cshperspect.a039628.
Fuster, J. M. 1997. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. Philadelphia: Lippincott‐Raven.
Garcia‐Perez, D., C. Nunez, M. L. Laorden, and M. V. Milanes. 2016. “Regulation of Dopaminergic Markers Expression in Response to Acute and Chronic Morphine and to Morphine Withdrawal.” Addiction Biology 21, no. 2: 374–386. https://doi.org/10.1111/adb.12209.
Goldstein, R. Z., and N. D. Volkow. 2011. “Dysfunction of the Prefrontal Cortex in Addiction: Neuroimaging Findings and Clinical Implications.” Nature Reviews Neuroscience 12, no. 11: 652–669. https://doi.org/10.1038/nrn3119.
Gong, S., N. Fayette, J. A. Heinsbroek, and C. P. Ford. 2022. “Cocaine Shifts Dopamine D2 Receptor Sensitivity to Gate Conditioned Behaviors.” Neuron 110, no. 7: 3421–3435. https://doi.org/10.1016/j.neuron.2022.03.005.
Hildebrand, B. E., G. G. Nomikos, P. Hertel, B. Schilstrom, and T. H. Svensson. 1998. “Reduced Dopamine Output in the Nucleus Accumbens But not in the Medial Prefrontal Cortex in Rats Displaying a Mecamylamine‐Precipitated Nicotine Withdrawal Syndrome.” Brain Research 779, no. 1–2: 214–225. https://doi.org/10.1016/s0006‐8993(97)01135‐9.
Hunt, W. A., L. W. Barnett, and L. G. Branch. 1971. “Relapse Rates in Addiction Programs.” Journal of Clinical Psychology 27, no. 4: 455–456. https://doi.org/10.1002/1097‐4679(197110)27:4<455::aid‐jclp2270270412>3.0.co;2‐r.
Ikegami, D., M. Narita, S. Imai, et al. 2010. “Epigenetic Modulation at the CCR2 Gene Correlates with the Maintenance of Behavioral Sensitization to Methamphetamine.” Addiction Biology 15, no. 3: 358–361. https://doi.org/10.1111/j.1369‐1600.2010.00219.x.
Kalivas, P. W., and N. D. Volkow. 2005. “The Neural Basis of Addiction: A Pathology of Motivation and Choice.” American Journal of Psychiatry 162, no. 8: 1403–1413. https://doi.org/10.1176/appi.ajp.162.8.1403.
Kupnicka, P., J. Listos, M. Tarnowski, et al. 2020. “Fluoride Affects Dopamine Metabolism and Causes Changes in the Expression of Dopamine Receptors (D1R and D2R) in Chosen Brain Structures of Morphine‐Dependent Rats.” International Journal of Molecular Sciences, 21, no. 7: 2361–2379. https://doi.org/10.3390/ijms21072361.
Nestler, E. J. 2014. “Epigenetic Mechanisms of Drug Addiction.” Neuropharmacology 76, no. Pt B: 259–268. https://doi.org/10.1016/j.neuropharm.2013.04.004.
Nouri Zadeh‐Tehrani, S., M. S. Sadat‐Shirazi, A. Akbarabadi, et al. 2020. “Beneficial Effects of Physical Activity on Depressive and OCD‐Like Behaviors in the Male Offspring of Morphine‐Abstinent Rats.” Brain Research 1744: 146908–146921. https://doi.org/10.1016/j.brainres.2020.146908.
Paulson, P. E., D. M. Camp, and T. E. Robinson. 1991. “Time Course of Transient Behavioral Depression and Persistent Behavioral Sensitization in Relation to Regional Brain Monoamine Concentrations During Amphetamine Withdrawal in Rats.” Psychopharmacology 103, no. 4: 480–492. https://doi.org/10.1007/BF02244248.
Peleg‐Raibstein, D., and J. Feldon. 2008. “Effects of Withdrawal from an Escalating Dose of Amphetamine on Conditioned Fear and Dopamine Response in the Medial Prefrontal Cortex.” Behavioural Brain Research 186, no. 1: 12–22. https://doi.org/10.1016/j.bbr.2007.07.034.
Piechota, M., M. Korostynski, M. Sikora, S. Golda, J. Dzbek, and R. Przewlocki. 2012. “Common Transcriptional Effects in the Mouse Striatum Following Chronic Treatment with Heroin and Methamphetamine.” Genes, Brain, and Behavior 11, no. 4: 404–414. https://doi.org/10.1111/j.1601‐183X.2012.00777.x.
Robinson, T. E., and K. C. Berridge. 2003. “Addiction.” Annual Review of Psychology 54: 25–53. https://doi.org/10.1146/annurev.psych.54.101601.145237.
Rohbani, K., S. Sabzevari, M. S. Sadat‐Shirazi, et al. 2019. “Parental Morphine Exposure Affects Repetitive Grooming Actions and Marble Burying Behavior in the Offspring: Potential Relevance for Obsessive‐Compulsive Like Behavior.” European Journal of Pharmacology 865: 172757–172768. https://doi.org/10.1016/j.ejphar.2019.172757.
Roth, M. E., A. G. Casimir, and M. E. Carroll. 2002. “Influence of Estrogen in the Acquisition of Intravenously Self‐Administered Heroin in Female Rats.” Pharmacology Biochemistry and Behavior 72, no. 1–2: 313–318. https://doi.org/10.1016/s0091‐3057(01)00777‐8.
Sabzevari, S., K. Rohbani, M. Sadeghi‐Adl, S. Khalifeh, M. S. Sadat‐Shirazi, and M. R. Zarrindast. 2023. “Does Morphine Exposure Before Gestation Change Anxiety‐Like Behavior During Morphine Dependence in Male Wistar Rats?” Addict Health 15, no. 3: 169–176. https://doi.org/10.34172/ahj.2023.1396.
Sadat‐Shirazi, M. S., P. Asgari, S. Mahboubi, et al. 2020. “Effect of Morphine Exposure on Novel Object Memory of the Offspring: The Role of Histone H3 and DeltaFosB.” Brain Research Bulletin 156, 141–149. https://doi.org/10.1016/j.brainresbull.2020.01.011.
Sadat‐Shirazi, M. S., F. Karimi, G. Kaka, et al. 2019. “Parental Morphine Exposure Enhances Morphine (But not Methamphetamine) Preference and Increases Monoamine Oxidase‐B level in the Nucleus Accumbens.” Behavioural Pharmacology 30, no. 5: 435–445. https://doi.org/10.1097/FBP.0000000000000465.
Sadat‐Shirazi, M. S., N. Monfared Neirizi, M. Matloob, et al. 2019. “Possible Involvement of Nucleus Accumbens D1‐Like Dopamine Receptors in the Morphine‐Induced Condition Place Preference in the Offspring of Morphine Abstinent Rats.” Life Sciences 233: 116712–116720. https://doi.org/10.1016/j.lfs.2019.116712.
Sadat‐Shirazi, M. S., S. Nouri Zadeh‐Tehrani, A. Akbarabadi, A. Mokri, B. Taleb Zadeh Kasgari, and M. R. Zarrindast. 2022. “Exercise can Restore Behavioural and Molecular Changes of Intergenerational Morphine Effects.” Addiction Biology 27, no. 2: e13122. https://doi.org/10.1111/adb.13122.
Sadat‐Shirazi, M. S., M. Sadeghi‐Adl, A. Akbarabadi, G. Ashabi, A. Mokri, and M. R. Zarrindast. 2022. “Inter/Transgenerational Effects of Drugs of Abuse: A Scoping Review.” CNS & Neurological Disorders—Drug Targets 22, no. (4): 512–538. https://doi.org/10.2174/1871527321666220429122819.
Sadat‐Shirazi, M. S., M. R. Zarrindast, H. Daneshparvar, et al. 2018. “Alteration of Dopamine Receptors Subtypes in the Brain of Opioid Abusers: A Postmortem Study in Iran.” Neuroscience Letters 687: 169–176. https://doi.org/10.1016/j.neulet.2018.09.043.
Salazar‐Juarez, A., S. Barbosa‐Mendez, N. Jurado, R. Hernandez‐Miramontes, P. Leff, and B. Anton. 2016. “Mirtazapine Prevents Induction and Expression of Cocaine‐Induced Behavioral Sensitization in Rats.” Progress in Neuro‐Psychopharmacology & Biological Psychiatry 68: 15–24. https://doi.org/10.1016/j.pnpbp.2016.02.010.
Sinha, R. 2011. “New Findings on Biological Factors Predicting Addiction Relapse Vulnerability.” Current Psychiatry Reports 13, no. 5: 398–405. https://doi.org/10.1007/s11920‐011‐0224‐0.
Solinas, M., P. Belujon, P. O. Fernagut, M. Jaber, and N. Thiriet. 2019. “Dopamine and Addiction: What have We Learned from 40 Years of Research.” Journal of Neural Transmission 126, no. 4: 481–516. https://doi.org/10.1007/s00702‐018‐1957‐2.
Steketee, J. D., and P. W. Kalivas. 2011. “Drug Wanting: Behavioral Sensitization and Relapse to Drug‐Seeking Behavior.” Pharmacological Reviews 63, no. 2: 348–365. https://doi.org/10.1124/pr.109.001933.
Szutorisz, H., and Y. L. Hurd. 2022. “Overcoming Addiction Stigma: Epigenetic Contributions to Substance Use Disorders and Opportunities for Intervention.” Neuron 110, no. 10: 1611–1614. https://doi.org/10.1016/j.neuron.2022.03.018.
Tzschentke, T. M., and W. J. Schmidt. 1998. “Discrete Quinolinic Acid Lesions of the Rat Prelimbic Medial Prefrontal Cortex Affect Cocaine‐ and MK‐801‐, but Not Morphine‐ and Amphetamine‐Induced Reward and Psychomotor Activation as Measured with the Place Preference Conditioning Paradigm.” Behavioural Brain Research 97, no. 1–2: 115–127. https://doi.org/10.1016/s0166‐4328(98)00034‐5.
Tzschentke, T. M., and W. J. Schmidt. 2000. “Differential Effects of Discrete Subarea‐Specific Lesions of the Rat Medial Prefrontal Cortex on Amphetamine‐ and Cocaine‐Induced Behavioural Sensitization.” Cerebral Cortex 10, no. 5: 488–498. https://doi.org/10.1093/cercor/10.5.488.
Ungless, M. A., E. Argilli, and A. Bonci. 2010. “Effects of Stress and Aversion on Dopamine Neurons: Implications for Addiction.” Neuroscience and Biobehavioral Reviews 35, no. 2: 151–156. https://doi.org/10.1016/j.neubiorev.2010.04.006.
Vassoler, F. M., A. M. Toorie, and E. M. Byrnes. 2019. “Multi‐, Inter‐, and Transgenerational Effects of Drugs of Abuse on Behavior.” Current Topics in Behavioral Neurosciences 42: 247–258. https://doi.org/10.1007/7854&#95;2019&#95;106.
Vassoler, F. M., A. M. Toorie, D. N. Teceno, et al. 2020. “Paternal Morphine Exposure Induces Bidirectional Effects on Cocaine Versus Opioid Self‐Administration.” Neuropharmacology 162: 107852–107860. https://doi.org/10.1016/j.neuropharm.2019.107852.
Volkow, N. D., M. Michaelides, and R. Baler. 2019. “The Neuroscience of Drug Reward and Addiction.” Physiological Reviews 99, no. 4: 2115–2140. https://doi.org/10.1152/physrev.00014.2018.
Vousooghi, N., M. S. Sadat‐Shirazi, P. Safavi, et al. 2018. “Adult Rat Morphine Exposure Changes Morphine Preference, Anxiety, and the Brain Expression of Dopamine Receptors in Male Offspring.” International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience 69: 49–59. https://doi.org/10.1016/j.ijdevneu.2018.06.008.
Weiss, F., A. Markou, M. T. Lorang, and G. F. Koob. 1992. “Basal Extracellular Dopamine Levels in the Nucleus Accumbens are Decreased During Cocaine Withdrawal After Unlimited‐Access Self‐Administration.” Brain Research 593, no. 2: 314–318. https://doi.org/10.1016/0006‐8993(92)91327‐b.
Werner, C. T., R. D. Altshuler, Y. Shaham, and X. Li. 2021. “Epigenetic Mechanisms in Drug Relapse.” Biological Psychiatry 89, no. 4: 331–338. https://doi.org/10.1016/j.biopsych.2020.08.005.
Williams, J. M., and J. D. Steketee. 2005. “Time‐Dependent Effects of Repeated Cocaine Administration on Dopamine Transmission in the Medial Prefrontal Cortex.” Neuropharmacology 48, no. 1: 51–61. https://doi.org/10.1016/j.neuropharm.2004.09.004.
Williams, J. T., S. L. Ingram, G. Henderson, et al. 2013. “Regulation of Mu‐Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance.” Pharmacological Reviews 65, no. 1: 223–254. https://doi.org/10.1124/pr.112.005942.
Wolf, M. E., S. L. Dahlin, X. T. Hu, C. J. Xue, and K. White. 1995. “Effects of Lesions of Prefrontal Cortex, Amygdala, or Fornix on Behavioral Sensitization to Amphetamine: Comparison with N‐Methyl‐D‐Aspartate Antagonists.” Neuroscience 69, no. 2: 417–439. https://doi.org/10.1016/0306‐4522(95)00248‐h.
Zhan, B., H. Y. Ma, J. L. Wang, and C. B. Liu. 2015. “Sex Differences in Morphine‐Induced Behavioral Sensitization and Social Behaviors in ICR Mice.” Dongwuxue Yanjiu 36, no. 2: 103–108. https://10.13918/j.issn.2095‐8137.2015.2.103.
فهرسة مساهمة: Keywords: cocaine; dopamine receptors; locomotor sensitization; morphine; transgenerational inheritance
المشرفين على المادة: 76I7G6D29C (Morphine)
I5Y540LHVR (Cocaine)
0 (Receptors, Dopamine D2)
0 (Narcotics)
0 (Dopamine Uptake Inhibitors)
0 (DRD2 protein, rat)
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240626 Latest Revision: 20240626
رمز التحديث: 20240627
DOI: 10.1002/dev.22514
PMID: 38922890
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-2302
DOI:10.1002/dev.22514