دورية أكاديمية

Flexible Conceptual Representations.

التفاصيل البيبلوغرافية
العنوان: Flexible Conceptual Representations.
المؤلفون: Truman A; Department of Cognitive Science, University of California, San Diego., Kutas M; Department of Cognitive Science, University of California, San Diego.
المصدر: Cognitive science [Cogn Sci] 2024 Jun; Vol. 48 (6), pp. e13475.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 7708195 Publication Model: Print Cited Medium: Internet ISSN: 1551-6709 (Electronic) Linking ISSN: 03640213 NLM ISO Abbreviation: Cogn Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2009-: Hoboken, N.J. : Wiley-Blackwell
Original Publication: Norwood, N. J., Ablex Pub. Corp.
مواضيع طبية MeSH: Concept Formation*, Humans ; Cognition ; Bayes Theorem ; Comprehension
مستخلص: A view that has been gaining prevalence over the past decade is that the human conceptual system is malleable, dynamic, context-dependent, and task-dependent, that is, flexible. Within the flexible conceptual representation framework, conceptual representations are constructed ad hoc, forming a different, idiosyncratic instantiation upon each occurrence. In this review, we scrutinize the neurocognitive literature to better understand the nature of this flexibility. First, we identify some key characteristics of these representations. Next, we consider how these flexible representations are constructed by addressing some of the open questions in this framework: We review the age-old question of how to reconcile flexibility with the apparent need for shareable stable definitions to anchor meaning and come to mutual understanding, as well as some newer questions we find critical, namely, the nature of relations among flexible representations, the role of feature saliency in activation, and the viability of all-or-none feature activations. We suggest replacing the debate about the existence of a definitional stable core that is obligatorily activated with a question of the degree and probability of activation of the information constituting a conceptual representation. We rely on published works to suggest that (1) prior featural salience matters, (2) feature activation may be graded, and (3) Bayesian updating of prior information according to current demands offers a viable account of how flexible representations are constructed. This proposal provides a theoretical mechanism for incorporating a changing momentary context into a constructed representation, while still preserving some of the concept's constituent meaning.
(© 2024 The Author(s). Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS).)
References: Allport, D. A. (1985). Distributed memory, modular subsystems and dysphasia. In S. K. Newman & R. Epstein (Eds.), Current perspectives in dysphasia (pp. 32–60). New York: Churchill Livingstone.
Amsel, B. D., DeLong, K. A., & Kutas, M. (2015). Close, but no garlic: Perceptuomotor and event knowledge activation during language comprehension. Journal of Memory and Language, 82, 118–132.
Antonucci, S. M., & Alt, M. (2011). A lifespan perspective on semantic processing of concrete concepts: Does a sensory/motor model have the potential to bridge the gap? Cognitive, Affective, & Behavioral Neuroscience, 11(4), 551–572.
Atran, S. (1998). Folk biology and the anthropology of science: Cognitive universals and cultural particulars. Behavioral and Brain Sciences, 21(4), 547–569.
Barclay, J. R., Bransford, J. D., Franks, J. J., McCarrell, N. S., & Nitsch, K. (1974). Comprehension and semantic flexibility. Journal of Verbal Learning and Verbal Behavior, 13(4), 471–481.
Barsalou, L. W. (1982). Context‐independent and context‐dependent information in concepts. Memory & Cognition, 10(1), 82–93.
Barsalou, L. W. (1987). The instability of graded structure: Implications for the nature of concepts. In U. Neisser (Ed.), Concepts and conceptual development: Ecological and intellectual factors in categorization (pp. 101–140). Cambridge: Cambridge University Press.
Barsalou, L. W. (1989). Intraconcept similarity and its implications for interconcept similarity. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 76–121). Cambridge: Cambridge University Press.
Barsalou, L. W. (1993). Flexibility, structure, and linguistic vagary in concepts: Manifestations of a compositional system of perceptual symbols. In A. F. Collins, S. E. Gathercole, M. A. Conway, & P. E. Morris (Eds.), Theories of memory (pp. 29–101). Hove: Lawrence Erlbaum Associates.
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–660.
Barsalou, L. (2003). Situated simulation in the human conceptual system. Language and Cognitive Processes, 18(5‐6), 513–562.
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.
Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724.
Barsalou, L. W. (2016). On staying grounded and avoiding quixotic dead ends. Psychonomic Bulletin & Review, 23(4), 1122–1142.
Basso, A., Capitani, E., & Laiacona, M. (1988). Progressive language impairment without dementia: A case with isolated category specific semantic defect. Journal of Neurology, Neurosurgery & Psychiatry, 51(9), 1201–1207.
Bermeitinger, C., Wentura, D., & Frings, C. (2011). How to switch on and switch off semantic priming effects for natural and artifactual categories: Activation processes in category memory depend on focusing specific feature dimensions. Psychonomic Bulletin & Review, 18(3), 579–585.
Borghi, A. M., Glenberg, A. M., & Kaschak, M. P. (2004). Putting words in perspective. Memory & Cognition, 32, 863–873.
Brown, C., & Hagoort, P. (1993). The processing nature of the N400: Evidence from masked priming. Journal of Cognitive Neuroscience, 5(1), 34–44.
Casasanto, D., & Lupyan, G. (2015). All concepts are ad hoc concepts. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 543–566). Cambridge, MA: MIT Press.
Castro, N., & Siew, C. S. (2020). Contributions of modern network science to the cognitive sciences: Revisiting research spirals of representation and process. Proceedings of the Royal Society A, 476(2238), 20190825.
Chao, L. L., & Martin, A. (2000). Representation of manipulable man‐made objects in the dorsal stream. Neuroimage, 12(4), 478–484.
Chater, N., & Manning, C. D. (2006). Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences, 10(7), 335–344.
Chater, N., Oaksford, M., Hahn, U., & Heit, E. (2010). Bayesian models of cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 811–823.
Chiou, R., Humphreys, G. F., Jung, J., & Ralph, M. A. L. (2018). Controlled semantic cognition relies upon dynamic and flexible interactions between the executive ‘semantic control’ and hub‐and‐spoke ‘semantic representation’ systems. Cortex, 103, 100–116.
Coltheart, M., Inglls, L., Cupples, L., Michie, P., Bates, A., & Budd, B. (1998). A semantic subsystem of visual attributes. Neurocase, 4(4‐5), 353–370.
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256.
Connell, L. (2007). Representing object colour in language comprehension. Cognition, 102(3), 476–485.
Connell, L., & Lynott, D. (2014). Principles of representation: Why you can't represent the same concept twice. Topics in Cognitive Science, 6(3), 390–406.
Damasio, A. R. (1989). Time‐locked multiregional retroactivation: A systems‐level proposal for the neural substrates of recall and recognition. Cognition, 33(1‐2), 25–62.
De Deyne, S., & Storms, G. (2008). Word associations: Network and semantic properties. Behavior Research Methods, 40(1), 213–231.
De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single‐word associations. Behavior Research Methods, 45(2), 480–498.
De Renzi, E., & Lucchelli, F. (1994). Are semantic systems separately represented in the brain? The case of living category impairment. Cortex, 30(1), 3–25.
Debruille, J. B. (2007). The N400 potential could index a semantic inhibition. Brain Research Reviews, 56(2), 472–477.
Dieciuc, M. A., & Folstein, J. R. (2019). Typicality: Stable structures and flexible functions. Psychonomic Bulletin & Review, 26, 491–505.
Dry, M. J., & Storms, G. (2010). Features of graded category structure: Generalizing the family resemblance and polymorphous concept models. Acta Psychologica, 133(3), 244–255.
Ellis, R., & Tucker, M. (2000). Micro‐affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(4), 451–471.
Farah, M. J., & McClelland, J. L. (2013). A computational model of semantic memory impairment: Modality specificity and emergent category specificity (Journal of Experimental Psychology: General, 120(4), 339–357). In G. Cohen, R. A. Johnstone, & K. Plunkett (Eds.), Exploring cognition: Damaged brains and neural networks (pp. 79–110). Hoboken: Taylor and Francis.
Federmeier, K. D., & Laszlo, S. (2009). Time for meaning: Electrophysiology provides insights into the dynamics of representation and processing in semantic memory. In B. H. Ross (Ed.), Psychology of Learning and Motivation (Vol. 51, pp. 1–44). Waltham, MA: Elsevier.
Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., Conant, L. L., & Seidenberg, M. S. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex, 26(5), 2018–2034.
Ferreira, F., & Patson, N. D. (2007). The ‘good enough’ approach to language comprehension. Language and Linguistics Compass, 1(1‐2), 71–83.
Ferreira, F., Bailey, K. G., & Ferraro, V. (2002). Good‐enough representations in language comprehension. Current Directions in Psychological Science, 11(1), 11–15.
Fischler, I. (1977). Semantic facilitation without association in a lexical decision task. Memory & Cognition, 5, 335–339.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: A comparison of high‐dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379–401.
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8), 357–364.
Hardt, O., Einarsson, E. Ö., & Nader, K. (2010). A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annual Review of Psychology, 61, 141–167.
Hart, J., & Gordon, B. (1992). Neural subsystems for object knowledge. Nature, 359(6390), 60–64.
Hoenig, K., Sim, E. J., Bochev, V., Herrnberger, B., & Kiefer, M. (2008). Conceptual flexibility in the human brain: Dynamic recruitment of semantic maps from visual, motor, and motion‐related areas. Journal of Cognitive Neuroscience, 20(10), 1799–1814.
Hoffman, P., McClelland, J. L., & Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125(3), 293–328.
Huettig, F., & Altmann, G. T. (2007). Visual‐shape competition during language‐mediated attention is based on lexical input and not modulated by contextual appropriateness. Visual Cognition, 15(8), 985–1018.
Huettig, F., Guerra, E., & Helo, A. (2020). Towards understanding the task dependency of embodied language processing: The influence of colour during language‐vision interactions. Journal of Cognition, 3(1), 41, 1–19.
Hutchison, K. A. (2003). Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychonomic Bulletin & Review, 10(4), 785–813.
Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning theory applied to human cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2(1), 8–21.
Joanisse, M. F., & McClelland, J. L. (2015). Connectionist perspectives on language learning, representation and processing. Wiley Interdisciplinary Reviews: Cognitive Science, 6(3), 235–247.
Kan, I. P., Barsalou, L. W., Olseth Solomon, K., Minor, J. K., & Thompson‐Schill, S. L. (2003). Role of mental imagery in a property verification task: FMRI evidence for perceptual representations of conceptual knowledge. Cognitive Neuropsychology, 20(3‐6), 525–540.
Kellenbach, M. L., Brett, M., & Patterson, K. (2003). Actions speak louder than functions: The importance of manipulability and action in tool representation. Journal of Cognitive Neuroscience, 15(1), 30–46.
Kellenbach, M. L., Wijers, A. A., & Mulder, G. (2000). Visual semantic features are activated during the processing of concrete words: Event‐related potential evidence for perceptual semantic priming. Cognitive Brain Research, 10(1‐2), 67–75.
Kemmerer, D. (2015). Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychonomic Bulletin & Review, 22(4), 1068–1075.
Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 105(31), 10687–10692.
Kiefer, M. (2005). Repetition‐priming modulates category‐related effects on event‐related potentials: Further evidence for multiple cortical semantic systems. Journal of Cognitive Neuroscience, 17(2), 199–211.
Kiefer, M., Sim, E. J., Herrnberger, B., Grothe, J., & Hoenig, K. (2008). The sound of concepts: Four markers for a link between auditory and conceptual brain systems. Journal of Neuroscience, 28(47), 12224–12230.
Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48(7), 805–825.
Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326.
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.
Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412.
Kumar, A. A., Steyvers, M., & Balota, D. A. (2022). A critical review of network‐based and distributional approaches to semantic memory structure and processes. Topics in Cognitive Science, 14(1), 54–77.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event‐related brain potential (ERP). Annual Review of Psychology, 62, 621–647.
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203–205.
Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18, 42–55.
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (De) constructing the N400. Nature Reviews Neuroscience, 9(12), 920–933.
Lebois, L. A., Wilson‐Mendenhall, C. D., & Barsalou, L. W. (2015). Are automatic conceptual cores the gold standard of semantic processing? The context‐dependence of spatial meaning in grounded congruency effects. Cognitive Science, 39(8), 1764–1801.
Löhr, G. (2017). Abstract concepts, compositionality, and the contextualism‐invariantism debate. Philosophical Psychology, 30(6), 689–710.
Lucas, M. (2000). Semantic priming without association: A meta‐analytic review. Psychonomic Bulletin & Review, 7, 618–630.
Ludlow, P. (2014). Living words: Meaning underdetermination and the dynamic lexicon. Oxford, England: Oxford University Press.
Lupyan, G., & Lewis, M. (2019). From words‐as‐mappings to words‐as‐cues: The role of language in semantic knowledge. Language, Cognition and Neuroscience, 34(10), 1319–1337.
Machery, E. (2007). Concept empiricism: A methodological critique. Cognition, 104(1), 19–46.
Machery, E. (2015). By default: Concepts are accessed in a context‐independent manner. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 567–588). Cambridge, MA: MIT Press.
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology‐Paris, 102(1‐3), 59–70.
Mamassian, P., Landy, M., & Maloney, L. T. (2002). Bayesian modelling of visual perception. In R. P. N. Rao, B. A. Olshausen, & M. S. Lewicki (Eds.), Probabilistic models of the brain: Perception and neural function (pp. 13–36). Cambridge, MA: MIT Press.
Marocco, D., Cangelosi, A., Fischer, K., & Belpaeme, T. (2010). Grounding action words in the sensorimotor interaction with the world: Experiments with a simulated iCub humanoid robot. Frontiers in Neurorobotics, 4, 7.
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270(5233), 102–105.
Mazzone, M., & Lalumera, E. (2010). Concepts: Stored or created? Minds and Machines, 20, 47–68.
McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing approach to semantic cognition. Nature Reviews Neuroscience, 4(4), 310–322.
McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547–559.
McRae, K., De Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126(2), 99–130.
Michel, C. (2020). Concept contextualism through the lens of Predictive Processing. Philosophical Psychology, 33(4), 624–647.
Nastase, S. A., Connolly, A. C., Oosterhof, N. N., Halchenko, Y. O., Guntupalli, J. S., Visconti di Oleggio Castello, M., Gors, J., Gobbini, M. I., & Haxby, J. V. (2017). Attention selectively reshapes the geometry of distributed semantic representation. Cerebral Cortex, 27(8), 4277–4291.
Neely, J. H. (1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading activation and limited‐capacity attention. Journal of Experimental Psychology: General, 106(3), 226–254.
Neely, J. H. (1991). Semantic priming effects in visual word recognition: A selective review of current findings and theory. In D. Besner & G. W. Humphreys (Eds.), Basic processes in reading: Visual word recognition (pp. 264–336). Hillsdale, NJ: Lawrence Erlbaum Associates.
Negri, G. A., Lunardelli, A., Reverberi, C., Gigli, G. L., & Rumiati, R. I. (2007). Degraded semantic knowledge and accurate object use. Cortex, 43(3), 376–388.
Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3), 402–407.
Nieuwland, M. S., & Van Berkum, J. J. (2006). When peanuts fall in love: N400 evidence for the power of discourse. Journal of Cognitive Neuroscience, 18(7), 1098–1111.
Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences, 105(7), 2745–2750.
Paczynski, M., & Kuperberg, G. R. (2012). Multiple influences of semantic memory on sentence processing: Distinct effects of semantic relatedness on violations of real‐world event/state knowledge and animacy selection restrictions. Journal of Memory and Language, 67(4), 426–448.
Pecher, D., Zanolie, K., & Zeelenberg, R. (2007). Verifying visual properties in sentence verification facilitates picture recognition memory. Experimental Psychology, 54(3), 173–179.
Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2004). Sensorimotor simulations underlie conceptual representations: Modality‐specific effects of prior activation. Psychonomic Bulletin & Review, 11(1), 164–167.
Pecher, D., Zeelenberg, R., & Raaijmakers, J. G. (1998). Does pizza prime coin? Perceptual priming in lexical decision and pronunciation. Journal of Memory and Language, 38(4), 401–418.
Plaut, D. C. (2002). Graded modality‐specific specialisation in semantics: A computational account of optic aphasia. Cognitive Neuropsychology, 19(7), 603–639.
Popp, M., Trumpp, N. M., Sim, E. J., & Kiefer, M. (2019). Brain activation during conceptual processing of action and sound verbs. Advances in Cognitive Psychology, 15(4), 236–255.
Rabovsky, M., & McRae, K. (2014). Simulating the N400 ERP component as semantic network error: Insights from a feature‐based connectionist attractor model of word meaning. Cognition, 132(1), 68–89.
Ralph, M. A. L., Sage, K., Jones, R. W., & Mayberry, E. J. (2010). Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Sciences, 107(6), 2717–2722.
Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and Verbal Behavior, 14(6), 665–681.
Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.
Rommers, J., Meyer, A. S., & Huettig, F. (2015). Verbal and nonverbal predictors of language‐mediated anticipatory eye movements. Attention, Perception, & Psychophysics, 77(3), 720–730.
Rommers, J., Meyer, A. S., Praamstra, P., & Huettig, F. (2013). The contents of predictions in sentence comprehension: Activation of the shape of objects before they are referred to. Neuropsychologia, 51(3), 437–447.
Rosch, E. H. (2011). Slow lettuce: Categories, concepts, fuzzy sets, and logical deduction. Concepts and Fuzzy Logic, 8, 89–120.
Sartori, G., & Job, R. (1988). The oyster with four legs: A neuropsychological study on the interaction of visual and semantic information. Cognitive Neuropsychology, 5(1), 105–132.
Schreuder, R., Flores d'Arcais, G. B., & Glazenborg, G. (1984). Effects of perceptual and conceptual similarity in semantic priming. Psychological Research, 45(4), 339–354.
Silveri, M. C., & Gainotti, G. (1988). Interaction between vision and language in category‐specific semantic impairment. Cognitive Neuropsychology, 5(6), 677–709.
Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45(12), 2802–2810.
Steyvers, M., Griffiths, T. L., & Dennis, S. (2006). Probabilistic inference in human semantic memory. Trends in Cognitive Sciences, 10(7), 327–334.
Van Berkum, J. J. (2009). The neuropragmatics of ‘simple’ utterance comprehension: An ERP review. In U. Sauerand & K. Yatsushiro (Eds.), Semantics and pragmatics: From experiment to theory (pp. 276–316). Basingstoke: Palgrave Macmillan.
Van Dantzig, S., Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2008). Perceptual processing affects conceptual processing. Cognitive Science, 32(3), 579–590.
Vermeulen, N., Corneille, O., & Niedenthal, P. M. (2008). Sensory load incurs conceptual processing costs. Cognition, 109(2), 287–294.
Vivas, J., Kogan, B., Yerro, M., Romanelli, S., & Vivas, L. (2021). Describing the structure of concepts through different feature levels. Journal of Cognitive Psychology, 33(1), 49–63.
Warrington, E. K., & McCarthy, R. A. (1987). Categories of knowledge: Further fractionations and an attempted integration. Brain, 110(5), 1273–1296.
Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107(3), 829–853.
Werning, M., Unterhuber, M., & Wiedemann, G. (2019). Bayesian Pragmatics provides the best quantitative model of context effects on word meaning in EEG and cloze data. CogSci 2019, Montreal, Canada (pp. 3085–3091).
Whitney, P., McKay, T., Kellas, G., & Emerson, W. A. (1985). Semantic activation of noun concepts in context. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(1), 126–135.
Winkielman, P., Coulson, S., & Niedenthal, P. (2018). Dynamic grounding of emotion concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170127.
Winkielman, P., Davis, J. D., & Coulson, S. (2023). Moving thoughts: Emotion concepts from the perspective of context dependent embodied simulation. Language, Cognition and Neuroscience, 38(10), 1531–1553.
Xu, F., & Tenenbaum, J. B. (2007). Word learning as Bayesian inference. Psychological Review, 114(2), 245–272.
Yee, E. (2017). Fluid semantics: Semantic knowledge is experience‐based and dynamic. In S. Kotzor & A. Lahiri (Eds.), The speech processing lexicon (pp. 236–255). Berlin: De Gruyter Mouton.
Yee, E., & Thompson‐Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23, 1015–1027.
Yee, E., Ahmed, S. Z., & Thompson‐Schill, S. L. (2012). Colorless green ideas (can) prime furiously. Psychological Science, 23(4), 364–369.
Yee, E., Chrysikou, E. G., Hoffman, E., & Thompson‐Schill, S. L. (2013). Manual experience shapes object representations. Psychological Science, 24, (6), 909–919.
Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002). Language comprehenders mentally represent the shapes of objects. Psychological Science, 13(2), 168–171.
فهرسة مساهمة: Keywords: Brain; Concepts; Context‐dependent effect; Flexible conceptual representations; Flexible semantics; Fuzzy concepts; Neuroscience; Representations
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240626 Latest Revision: 20240626
رمز التحديث: 20240627
DOI: 10.1111/cogs.13475
PMID: 38923016
قاعدة البيانات: MEDLINE
الوصف
تدمد:1551-6709
DOI:10.1111/cogs.13475