دورية أكاديمية

Construction of organ of Corti organoid to study the effects of berberine sulfate on damaged auditory cells.

التفاصيل البيبلوغرافية
العنوان: Construction of organ of Corti organoid to study the effects of berberine sulfate on damaged auditory cells.
المؤلفون: Zhang J; College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China., Liu L; College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China., Shen R; Department of Geriatrics, Yueyang Hosptial of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China., Lou X; College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China.
المصدر: Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2024 Jul; Vol. 112 (7), pp. e35439.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234238 Publication Model: Print Cited Medium: Internet ISSN: 1552-4981 (Electronic) Linking ISSN: 15524973 NLM ISO Abbreviation: J Biomed Mater Res B Appl Biomater Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2003-
مواضيع طبية MeSH: Organ of Corti*/drug effects , Berberine*/pharmacology , Berberine*/chemistry , Tissue Scaffolds*/chemistry, Animals ; Mice ; Organoids/metabolism ; Organoids/drug effects ; Printing, Three-Dimensional ; Alginates/chemistry ; Alginates/pharmacology ; Gelatin/chemistry ; Gelatin/pharmacology ; Hair Cells, Auditory/drug effects ; Hair Cells, Auditory/metabolism ; Tissue Engineering ; Polyvinyl Alcohol/chemistry ; Polyvinyl Alcohol/pharmacology ; Hearing Loss, Sensorineural ; Spiral Ganglion/drug effects ; Spiral Ganglion/metabolism
مستخلص: Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.
(© 2024 Wiley Periodicals LLC.)
References: Delmaghani S, El‐Amraoui A. Inner ear gene therapies take off: current promises and future challenges. J Clin Med. 2020;9(7):2309.
Xu B, Li J, Chen X, Kou M. Puerarin attenuates cisplatin‐induced apoptosis of hair cells through the mitochondrial apoptotic pathway. Biochim Biophys Acta Mol Cell Res. 2022;1869(4):119208.
Kong L, Xin Y, Chi F, Chen J, Yang J. Developmental and functional hair cell‐like cells induced by Atoh1 overexpression in the adult mammalian cochlea in vitro. Neural Plast. 2020;2020:8885813.
Wu Y, Meng W, Guan M, et al. Pitavastatin protects against neomycin‐induced ototoxicity through inhibition of endoplasmic reticulum stress. Front Mol Neurosci. 2022;15:963083.
Xia L, Zhao X, Ma X, et al. Controllable growth of spiral ganglion neurons by magnetic colloidal nanochains. Nano Today. 2022;44:101507.
Leppiniemi J, Lahtinen P, Paajanen A, et al. 3D‐printable bioactivated Nanocellulose‐alginate hydrogels. ACS Appl Mater Interfaces. 2017;9(26):21959‐21970.
Rees A, Powell LC, Chinga‐Carrasco G, et al. 3D bioprinting of Carboxymethylated‐Periodate oxidized Nanocellulose constructs for wound dressing applications. Biomed Res Int. 2015;2015:925757.
Yi Y, Xie C, Liu J, Zheng Y, Wang J, Lu X. Self‐adhesive hydrogels for tissue engineering. J Mater Chem B. 2021;9(42):8739‐8767.
Suo H, Li L, Zhang C, et al. Glucosamine‐grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. J Biomed Mater Res B Appl Biomater. 2020;108(3):990‐999.
Alvarez‐Lorenzo C, Grinberg VY, Burova TV, Concheiro A. Stimuli‐sensitive cross‐linked hydrogels as drug delivery systems: impact of the drug on the responsiveness. Int J Pharm. 2020;579:119157.
Statnik ES, Sorokina EA, Larin II, et al. The characterization of PVA/PHY hydrogels for 3D printing fabrication of organ phantoms. Materials Today: Proceedings. 2020;33:1874‐1879.
Ailincai D, Mititelu‐Tartau L, Marin L. Citryl‐imine‐PEG‐ylated chitosan hydrogels ‐ promising materials for drug delivery applications. Int J Biol Macromol. 2020;162:1323‐1337.
Chen K, Wang F, Ding R, et al. Adhesive and injectable hydrogel microspheres for inner ear treatment. Small. 2022;18(36):2106591.
Gupta S, Sharma A, Vasantha Kumar J, Sharma V, Gupta PK, Verma RS. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self‐healing interpenetrating network hydrogel. Int J Biol Macromol. 2020;162:1358‐1371.
Kim H, Yang GH, Choi CH, Cho YS, Kim G. Gelatin/PVA scaffolds fabricated using a 3D‐printing process employed with a low‐temperature plate for hard tissue regeneration: fabrication and characterizations. Int J Biol Macromol. 2018;120(Pt A):119‐127.
Astaneh ME, Goodarzi A, Khanmohammadi M, et al. Chitosan/gelatin hydrogel and endometrial stem cells with subsequent atorvastatin injection impact in regenerating spinal cord tissue. Journal of Drug Delivery Science and Technology. 2020;58:101831.
Ilhan E, Cesur S, Guler E, et al. Development of Satureja cuneifolia‐loaded sodium alginate/polyethylene glycol scaffolds produced by 3D‐printing technology as a diabetic wound dressing material. Int J Biol Macromol. 2020;161:1040‐1054.
Nist‐Lund C, Kim J, Koehler KR. Advancements in inner ear development, regeneration, and repair through otic organoids. Curr Opin Genet Dev. 2022;76:101954.
Zine A, Messat Y, Fritzsch B. A human induced pluripotent stem cell‐based modular platform to challenge sensorineural hearing loss. Stem Cells. 2021;39(6):697‐706.
Moeinvaziri F, Zarkesh I, Pooyan P, Nunez DA, Baharvand H. Inner ear organoids: progress and outlook, with a focus on the vascularization. FEBS J. 2022;289(23):7368‐7384.
Bealer E, Crumley K, Clough D, et al. Extrahepatic transplantation of 3D cultured stem cell‐derived islet organoids on microporous scaffolds. Biomater Sci. 2023;11(10):3645‐3655.
Kaur S, Kaur I, Rawal P, Tripathi DM, Vasudevan A. Non‐matrigel scaffolds for organoid cultures. Cancer Lett. 2021;504:58‐66.
Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Natural polymer‐derived bioscaffolds for peripheral nerve regeneration. Adv Funct Mater. 2022;32(41):2203829.
Li S, Li Z, Yang J, Ha Y, Zhou X, He C. Inhibition of sympathetic activation by delivering Calcium Channel blockers from a 3D printed scaffold to promote bone defect repair. Adv Healthc Mater. 2022;11(16):e2200785.
Wang W, Chen E, Ding X, et al. N‐acetylcysteine protect inner hair cells from cisplatin by alleviated celluar oxidative stress and apoptosis. Toxicol in Vitro. 2022;81:105354.
Thangprasert A, Tansakul C, Thuaksubun N, Meesane J. Mimicked hybrid hydrogel based on gelatin/PVA for tissue engineering in subchondral bone interface for osteoarthritis surgery. Materials & Design. 2019;183:108113.
Xia M, Ma J, Sun S, Li W, Li H. The biological strategies for hearing re‐establishment based on the stem/progenitor cells. Neurosci Lett. 2019;711:134406.
Hu Y, Chen W, Yin H, et al. Super‐aligned carbon nanotubes and GelMA hydrogel composite scaffolds promote spiral ganglion neuron growth and orientation. Materials Today Nano. 2022;18:100181.
Wei H, Chen Z, Hu Y, et al. Topographically conductive butterfly wing substrates for directed spiral ganglion neuron growth. Small. 2021;17(38):2102062.
Li X, Aleardi A, Wang J, Zhou Y, Andrade R, Hu Z. Differentiation of spiral ganglion‐derived neural stem cells into functional Synaptogenetic neurons. Stem Cells Dev. 2016;25(10):803‐813.
Di Santo S, Mina A, Ducray A, Widmer HR, Senn P. Creatine supports propagation and promotes neuronal differentiation of inner ear progenitor cells. Neuroreport. 2014;25(7):446‐451.
Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell‐like cells from embryonic and induced pluripotent stem cells. Cell. 2010;141(4):704‐716.
Perny M, Ting CC, Kleinlogel S, Senn P, Roccio M. Generation of Otic sensory neurons from mouse embryonic stem cells in 3D culture. Front Cell Neurosci. 2017;11:409.
Tang PC, Alex AL, Nie J, et al. Defective Tmprss3‐associated hair cell degeneration in inner ear organoids. Stem Cell Reports. 2019;13(1):147‐162.
Liu C, Qin W, Wang Y, et al. 3D printed gelatin/sodium alginate hydrogel scaffolds doped with Nano‐Attapulgite for bone tissue repair. Int J Nanomedicine. 2021;16:8417‐8432.
Du J, Hu X, Su Y, et al. Gelatin/sodium alginate hydrogel‐coated decellularized porcine coronary artery to construct bilayer tissue engineered blood vessels. Int J Biol Macromol. 2022;209:2070‐2083.
Wang J, Huangfu M, Li X, et al. Osthole induces apoptosis and Caspase‐3/GSDME‐dependent Pyroptosis via NQO1‐mediated ROS generation in HeLa cells. Oxid Med Cell Longev. 2022;2022:8585598.
Wang S, Wang X, Neufurth M, et al. Biomimetic alginate/gelatin cross‐linked hydrogels supplemented with polyphosphate for wound healing applications. Molecules. 2020;25(21):5210.
Chen Y, Song J, Wang S, Liu W. PVA‐based hydrogels: promising candidates for articular cartilage repair. Macromol Biosci. 2021;21(10):e2100147.
Zhang T, Gu J, Liu X, et al. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Mater Sci Eng C. 2020;111:110855.
Song W, Markel DC, Jin X, Shi T, Ren W. Poly(vinyl alcohol)/collagen/hydroxyapatite hydrogel: properties and in vitro cellular response. J Biomed Mater Res A. 2012;100(11):3071‐3079.
Tang X, Wu H, Xie J, et al. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Prolif. 2021;54(9):e13112.
Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea. Mol Cell Neurosci. 2022;120:103720.
Jang J, Kim J‐y, Kim YC, et al. A 3D microscaffold Cochlear electrode Array for steroid elution. Adv Healthc Mater. 2019;8:8.
Tang PC, Hashino E, Nelson RF. Progress in modeling and targeting inner ear disorders with pluripotent stem cells. Stem Cell Reports. 2020;14(6):996‐1008.
Koehler KR, Nie J, Longworth‐Mills E, et al. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol. 2017;35(6):583‐589.
Battu SK, Repka MA, Maddineni S, Amar G. Physicochemical characterization of Berberine chloride: A perspective in the development of a solution dosage form for Oral delivery. AAPS PharmSciTech. 2010;11(3):1466‐1475.
Kim JH, Baek JI, Lee IK, Kim UK, Kim YR, Lee KY. Protective effect of berberine chloride against cisplatin‐induced ototoxicity. Genes Genomics. 2022;44(1):1‐7.
Zhao Z, Han Z, Naveena K, et al. ROS‐responsive nanoparticle as a Berberine carrier for OHC‐targeted therapy of noise‐induced hearing loss. ACS Appl Mater Interfaces. 2021;13(6):7102‐7114.
Chen J, Jiang Z, Liu X, et al. Berberine promotes the viability of random skin flaps via the PI3K/Akt/eNOS signaling pathway. Phytother Res. 2023;37(2):424‐437.
معلومات مُعتمدة: 20ZR1401200 Foundation of Shanghai Municipal Natural Science; 2021LK093 Budget of Shanghai University of Traditional Chinese Medicine; 2020-1-2 Open Project of Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Metabolic Diseases; 81303012 National Natural Youth Science Foundation of China
فهرسة مساهمة: Keywords: 3D bioprinting; organ of Corti; organoid; sensorineural hearing loss
المشرفين على المادة: 0I8Y3P32UF (Berberine)
0 (Alginates)
9000-70-8 (Gelatin)
9002-89-5 (Polyvinyl Alcohol)
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240626 Latest Revision: 20240626
رمز التحديث: 20240627
DOI: 10.1002/jbm.b.35439
PMID: 38923766
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4981
DOI:10.1002/jbm.b.35439