دورية أكاديمية

The effect of stress on the antibody response after vaccination in children aged 0-18 years: A systematic review.

التفاصيل البيبلوغرافية
العنوان: The effect of stress on the antibody response after vaccination in children aged 0-18 years: A systematic review.
المؤلفون: Svensson R; The Child and Adolescent Clinic 4072, The Danish National University Hospital, Copenhagen, Denmark., Malon M; The Child and Adolescent Clinic 4072, The Danish National University Hospital, Copenhagen, Denmark., Stensballe LG; The Child and Adolescent Clinic 4072, The Danish National University Hospital, Copenhagen, Denmark.; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark., Thorsen SU; Department of Clinical Immunology, The Danish National University Hospital, Copenhagen, Denmark., Svensson J; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.; Steno Diabetes Center Copenhagen, Copenhagen, Denmark.
المصدر: Scandinavian journal of immunology [Scand J Immunol] 2024 Aug; Vol. 100 (2), pp. e13394. Date of Electronic Publication: 2024 Jun 24.
نوع المنشور: Systematic Review; Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 0323767 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-3083 (Electronic) Linking ISSN: 03009475 NLM ISO Abbreviation: Scand J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell Scientific Publications
Original Publication: Oslo, Universitetsforlaget.
مواضيع طبية MeSH: Vaccination* , Antibody Formation*/immunology , Stress, Psychological*/immunology, Humans ; Child ; Infant ; Child, Preschool ; Adolescent ; Vaccines/immunology ; Infant, Newborn ; Stress, Physiological/immunology
مستخلص: Stress has been associated with less effective vaccine responses in adults. This review aims to investigate the evidence for a similar association in children. A systematic review search was conducted in January 2021 in three databases: Medline, Embase and PsycInfo. An updated search of the Medline database was systematically conducted until the most recent update on September 25th, 2023, to ensure the inclusion of the most current research available. Keywords related to stress, vaccines and children were used, and a total of 7263 (+1528) studies were screened by two independent investigators. Six studies met the inclusion criteria for data extraction and analysis. For quality assessment of the studies, the risk of bias in non-randomized studies-of interventions (ROBINS-I) tool was applied. Most of the studies suggest a negative role of stress on vaccine responses. However, the scarcity of studies, lack of confirmatory studies, risk of bias and heterogeneity according to age, type of vaccine, measures of stress and vaccine responses prevent a clear conclusion. Future studies should emphasize the use of as strict study designs as possible, including well-defined stress metrics and thorough examination of both pre- and post-vaccination responses. Systematic review registration: Prospero CRD42021230490.
(© 2024 The Author(s). Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of The Scandinavian Foundation for Immunology.)
References: Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clin Microbiol Rev. 2019;32(2):e00084‐18.
Vedhara K, Royal S, Sunger K, et al. Effects of non‐pharmacological interventions as vaccine adjuvants in humans: a systematic review and network meta‐analysis. Health Psychol Rev. 2020;15(2):27.
Semmes EC, Chen JL, Goswami R, Burt TD, Permar SR, Fouda GG. Understanding early‐life adaptive immunity to guide interventions for pediatric health. Front Immunol. 2021;11:595297.
Adam EK, Quinn ME, Tavernier R, McQuillan MT, Dahlke KA, Gilbert KE. Diurnal cortisol slopes and mental and physical health outcomes:a systematic review and meta‐analysis. Psychoneuroendocrinology. 2017;83:25‐41.
McGregor BA, Murphy KM, Albano DL, Ceballos RM. Stress, cortisol, and B lymphocytes: a novel approach to understanding academic stress and immune function. Stress. 2016;19(2):185‐191.
McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186:190‐222.
Agorastos A, Pervanidou P, Chrousos GP, Kolaitis G. Early life stress and trauma: developmental neuroendocrine aspects of prolonged stress system dysregulation. Hormones. 2018;17(4):507‐520.
Smith KE, Pollak SD. Early life stress and development: potential mechanisms for adverse outcomes. J Neurodev Disord. 2020;12(1):34.
Seiler A, Fagundes CP, Christian LM. The impact of everyday stressors on the immune system and health. In: Choukèr A, ed. Stress Challenges and Immunity in Space: from Mechanisms to Monitoring and Preventive Strategies. Springer; 2020:71‐92. doi:10.1007/978-3-030-16996-1_6.
Madison AA, Shrout MR, Renna ME, Kiecolt‐Glaser JK. Psychological and behavioral predictors of vaccine efficacy: considerations for COVID‐19. Perspect Psychol Sci. 2021;16(2):191‐203.
Burns VE, Carroll D, Ring C, Drayson M. Antibody response to vaccination and psychosocial stress in humans: relationships and mechanisms. Vaccine. 2003;21(19–20):2523‐2534.
Pedersen AF, Zachariae R, Bovbjerg DH. Psychological stress and antibody response to influenza vaccination: a meta‐analysis. Brain Behav Immun. 2009;23(4):427‐433.
Van Loveren H, Van Amsterdam JG, Vandebriel RJ, et al. Vaccine‐induced antibody responses as parameters of the influence of endogenous and environmental factors. Environ Health Perspect. 2001;109(8):757‐764.
Song H, Fall K, Fang F, et al. Stress related disorders and subsequent risk of life threatening infections: population based sibling controlled cohort study. BMJ. 2019;637:l5784.
Jiang T, Farkas DK, Ahern TP, Lash TL, Sørensen HT, Gradus JL. Posttraumatic stress disorder and incident infections: a nationwide cohort study. Epidemiol Camb Mass. 2019;30(6):911‐917.
Powell ND, Allen RG, Hufnagle AR, Sheridan JF, Bailey MT. Stressor‐induced alterations of adaptive immunity to vaccination and viral pathogens. Immunol Allergy Clin North Am. 2011;31(1):69‐79.
IPUMS‐DHS. [cited 2021 Feb 5]. Available from: https://www.idhsdata.org/idhs/vaccines.shtml.
Carlsson E, Frostell A, Ludvigsson J, Faresjö M. Psychological stress in children may alter the immune response. J Immunol. 2014;192(5):2071‐2081.
Kieling C, Baker‐Henningham H, Belfer M, et al. Child and adolescent mental health worldwide: evidence for action. Lancet. 2011;378(9801):1515‐1525.
Mental health of adolescents. [cited 2024 Apr 25]. Available from: https://www.who.int/news‐room/fact‐sheets/detail/adolescent‐mental‐health.
Child and adolescent mental health. 2022 National Healthcare Quality and Disparities Report. Agency for Healthcare Research and Quality (US); 2022 [cited 2024 Apr 25]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK587174/.
Bates R, Salsberry P, Ford J. Measuring stress in young children using hair cortisol: the state of the science. Biol Res Nurs. 2017;19(5):499‐510.
Glaser R, Kiecolt‐Glaser JK. Stress‐induced immune dysfunction: implications for health. Nat Rev Immunol. 2005;5(3):243‐251.
Campbell J, Ehlert U. Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology. 2012;37(8):1111‐1134.
Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukoc Biol. 2006;79(6):1093‐1104.
Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58(2–3):193‐210.
Russell E, Koren G, Rieder M, Van Uum S. Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology. 2012;37(5):589‐601.
Gunnar MR, Donzella B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology. 2002;27(1):199‐220.
Tarullo AR, Gunnar MR. Child maltreatment and the developing HPA axis. Horm Behav. 2006;50(4):632‐639.
Jansen J, Beijers R, Riksen‐Walraven M, de Weerth C. Cortisol reactivity in young infants. Psychoneuroendocrinology. 2010;35(3):329‐338.
Gunnar MR, Quevedo KM. Early care experiences and HPA axis regulation in children: a mechanism for later trauma vulnerability. Prog Brain Res. 2007;167:137‐149.
Shimba A, Ejima A, Ikuta K. Pleiotropic effects of glucocorticoids on the immune system in circadian rhythm and stress. Front Immunol. 2021;12:706951.
Trifonova ST, Zimmer J, Turner JD, Muller CP. Diurnal redistribution of human lymphocytes and their temporal associations with salivary cortisol. Chronobiol Int. 2013;30(5):669‐681.
Webster Marketon JI, Glaser R. Stress hormones and immune function. Cell Immunol. 2008;252(1):16‐26.
Rotenberg S, McGrath JJ. Inter‐relation between autonomic and HPA axis activity in children and adolescents. Biol Psychol. 2016;117:16‐25.
Szabó M. The short version of the depression anxiety stress scales (DASS‐21): factor structure in a young adolescent sample. J Adolesc. 2010;33(1):1‐8.
Whittaker AC. The vaccination model in psychoneuroimmunology research: a review. In: Yan Q, ed. Psychoneuroimmunology: Methods and Protocols. Springer; 2018:309‐326. doi:10.1007/978-1-4939-7828-1_16.
Dhabhar FS. Effects of psychological stress on skin immune function: implications for immunoprotection versus immunopathology. In: Granstein RD, Luger TA, eds. Neuroimmunology of the Skin: Basic Science to Clinical Practice. Springer; 2009:113‐123. doi:10.1007/978-3-540-35989-0_11.
Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for Immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16(5):300‐317.
Ben‐Shalom N, Sandbank E, Abramovitz L, et al. β2‐adrenergic signaling promotes higher‐affinity B cells and antibodies. Brain Behav Immun. 2023;113:66‐82.
Fiksdal A, Hanlin L, Kuras Y, et al. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology. 2019;102:44‐52.
Booij SH, Bouma EMC, de Jonge P, Ormel J, Oldehinkel AJ. Chronicity of depressive problems and the cortisol response to psychosocial stress in adolescents: the TRAILS study. Psychoneuroendocrinology. 2013;38(5):659‐666.
Burns VE, Gallagher S. Antibody response to vaccination as a marker of in vivo immune function in psychophysiological research. Neurosci Biobehav Rev. 2010;35(1):122‐126.
Vedhara K, Fox JD, Wang ECY. The measurement of stress‐related immune dysfunction in psychoneuroimmunology. Neurosci Biobehav Rev. 1999;23(5):699‐715.
Watson B, Viner K. How the immune response to vaccines is created, maintained and measured: addressing patient questions about vaccination. Prim Care Clin off Pract. 2011;38(4):581‐593.
Vittrup DM, Jensen A, Sørensen JK, et al. Immunogenicity and reactogenicity following MMR vaccination in 5‐7‐month‐old infants: a double‐blind placebo‐controlled randomized clinical trial in 6540 Danish infants. EClinicalMedicine. 2024;68:102421.
O'Connor TG, Moynihan JA, Wyman PA, et al. Depressive symptoms and immune response to meningococcal conjugate vaccine in early adolescence. Dev Psychopathol. 2014;26(4 Pt 2):1567‐1576.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta‐analyses: the PRISMA statement. BMJ. 2009;339:b2535.
Gutteling BM, Weerth C d, Buitelaar JK. Maternal prenatal stress and 4–6 year old Children's salivary cortisol concentrations pre‐ and post‐vaccination. Stress. 2004;7(4):257‐260.
Fields A, Harmon C, Lee Z, Louie JY, Tottenham N. Parent's anxiety links household stress and young children's behavioral dysregulation. Dev Psychobiol. 2021;63(1):16‐30.
Korja R, Nolvi S, Grant KA, McMahon C. The relations between maternal prenatal anxiety or stress and child's early negative reactivity or self‐regulation: a systematic review. Child Psychiatry Hum Dev. 2017;48(6):851‐869.
Sterne JA, Hernán MA, Reeves BC, et al. ROBINS‐I: a tool for assessing risk of bias in non‐randomised studies of interventions. BMJ. 2016;355:i4919.
Boyce WT, Adams S, Tschann JM, Cohen F, Wara D, Gunnar MR. Adrenocortical and behavioral predictors of immune responses to starting school. Pediatr Res. 1995;38(6):1009‐1017.
Morag M, Morag A, Reichenberg A, Lerer B, Yirmiya R. Psychological variables as predictors of rubella antibody titers and fatigue–a prospective, double blind study. J Psychiatr Res. 1999;33(5):389‐395.
O'Connor TG, Wang H, Moynihan JA, et al. Observed parent‐child relationship quality predicts antibody response to vaccination in children. Brain Behav Immun. 2015;48:265‐273.
O'Connor TG, Winter MA, Hunn J, et al. Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain Behav Immun. 2013;32:21‐28.
Huda MN, Ahmad SM, Alam MJ, et al. Infant cortisol stress‐response is associated with thymic function and vaccine response. Stress Amst Neth. 2019;22(1):36‐43.
Lucas RM, McMichael AJ. Association or causation: evaluating links between “environment and disease”. Bull World Health Organ. 2005;4:792‐795.
What is considered to Be a ‘strong’ correlation? Statology. 2020 Available from: https://www.statology.org/what‐is‐a‐strong‐correlation/.
Fekedulegn DB, Andrew ME, Burchfiel CM, et al. Area under the curve and other summary indicators of repeated waking cortisol measurements. Psychosom Med. 2007;69(7):651‐659.
Staufenbiel SM, Penninx BWJH, Spijker AT, Elzinga BM, van Rossum EFC. Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology. 2013;38(8):1220‐1235.
Li Y, Jia W, Yan N, et al. Associations between chronic stress and hair cortisol in children: a systematic review and meta‐analysis. J Affect Disord. 2023;329:438‐447.
Bates RA, Militello L, Barker E, Villasanti HG, Schmeer K. Early childhood stress responses to psychosocial stressors: the state of the science. Dev Psychobiol. 2022;64(7):e22320.
Rosenbaum PR. Criterion‐related construct validity. Psychometrika. 1989;54(4):625‐633.
Evans BE, Greaves‐Lord K, Euser AS, Tulen JHM, Franken IHA, Huizink AC. Determinants of physiological and perceived physiological stress reactivity in children and adolescents. PLoS One. 2013;8(4):e61724.
Whittaker AC. The vaccination model in psychoneuroimmunology research: a review. Methods Mol Biol. 2018;1781:309‐326.
Otasowie CO, Tanner R, Ray DW, Austyn JM, Coventry BJ. Chronovaccination: harnessing circadian rhythms to optimize immunisation strategies. Front Immunol. 2022;13:977525.
Wang C, Lutes LK, Barnoud C, Scheiermann C. The circadian immune system. Sci Immunol. 2022;7(72):eabm2465.
Garcia J, Rosen G, Mahowald M. Circadian rhythms and circadian rhythm disorders in children and adolescents. Semin Pediatr Neurol. 2001;8(4):229‐240.
Payne S. Chapter 6 – Immunity and resistance to viruses. In: Payne S, ed. Viruses. Academic Press; 2017:61‐71.
Vaidya SR, Brown DWG, Jin L, Samuel D, Andrews N, Brown KE. Development of a focus reduction neutralization test (FRNT) for detection of mumps virus neutralizing antibodies. J Virol Methods. 2010;163(1):153‐156.
Janssens Y, Joye J, Waerlop G, Clement F, Leroux‐Roels G, Leroux‐Roels I. The role of cell‐mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol. 2022;13:959379.
Vedhara K, Ayling K, Sunger K, et al. Psychological interventions as vaccine adjuvants: a systematic review. Vaccine. 2019;37(25):3255‐3266.
Vedhara K, Royal S, Sunger K, et al. Effects of non‐pharmacological interventions as vaccine adjuvants in humans: a systematic review and network meta‐analysis. Health Psychol Rev. 2021;15(2):245‐271.
فهرسة مساهمة: Keywords: antibodies; child; cortisol; immunogenicity; psychological; stress; vaccine
المشرفين على المادة: 0 (Vaccines)
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240715 Latest Revision: 20240716
رمز التحديث: 20240717
DOI: 10.1111/sji.13394
PMID: 38924129
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-3083
DOI:10.1111/sji.13394