دورية أكاديمية

Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments.

التفاصيل البيبلوغرافية
العنوان: Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments.
المؤلفون: Orr JA; Department of Biology, University of Oxford, Oxford, UK.; School of the Environment, University of Queensland, Brisbane, Queensland, Australia., Macaulay SJ; Department of Biology, University of Oxford, Oxford, UK., Mordente A; Department of Biology, University of Oxford, Oxford, UK., Burgess B; Department of Genetics, Evolution and Environment, University College London, London, UK., Albini D; Department of Biology, University of Oxford, Oxford, UK., Hunn JG; Department of Zoology, University of Otago, Dunedin, New Zealand., Restrepo-Sulez K; Department of Biology, University of Oxford, Oxford, UK., Wilson R; Department of Biology, University of Oxford, Oxford, UK., Schechner A; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.; Ruumi ApS, Svendborg, Denmark., Robertson AM; Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland., Lee B; Department of Biology, University of Oxford, Oxford, UK., Stuparyk BR; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada., Singh D; Natural Resources Institute, University of Manitoba, Winnipeg, Canada., O'Loughlin I; Department of Biology, University of Oxford, Oxford, UK., Piggott JJ; Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland., Zhu J; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China., Dinh KV; Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway., Archer LC; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada., Penk M; Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.; School of Biology and Environmental Science, University College Dublin, Dublin, Ireland., Vu MTT; Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway., Juvigny-Khenafou NPD; Institute of Aquaculture, University of Stirling, Scotland, UK.; Institute of Environmental Sciences, RPTU Kaiserslautern-Landau, Germany., Zhang P; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China., Sanders P; Department of Biology, University of Oxford, Oxford, UK., Schäfer RB; Research Center One Health Ruhr, University Alliance Ruhr.; Faculty of Biology, University Duisburg-Essen, Essen, Germany., Vinebrooke RD; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada., Hilt S; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany., Reed T; School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland., Jackson MC; Department of Biology, University of Oxford, Oxford, UK.
المصدر: Ecology letters [Ecol Lett] 2024 Jun; Vol. 27 (6), pp. e14463.
نوع المنشور: Journal Article; Systematic Review
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing Country of Publication: England NLM ID: 101121949 Publication Model: Print Cited Medium: Internet ISSN: 1461-0248 (Electronic) Linking ISSN: 1461023X NLM ISO Abbreviation: Ecol Lett Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, UK : Blackwell Publishing
Original Publication: Oxford, UK : [Paris, France] : Blackwell Science ; Centre national de la recherche scientifique, c1998-
مواضيع طبية MeSH: Ecosystem* , Fresh Water*, Human Activities ; Stress, Physiological
مستخلص: Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.
(© 2024 The Author(s). Ecology Letters published by John Wiley & Sons Ltd.)
References: Almond, R., Grooten, M. & Peterson, T. (2020) Living planet report 2020‐bending the curve of biodiversity loss. World Wildlife Fund.
Amano, T., Berdejo‐Espinola, V., Akasaka, M., de Andrade Junior, M.A., Blaise, N., Checco, J. et al. (2023) The role of non‐English‐language science in informing national biodiversity assessments. Nature Sustainability, 6(7), 845–854.
Beauchesne, D., Cazelles, K., Archambault, P., Dee, L.E. & Gravel, D. (2021) On the sensitivity of food webs to multiple stressors. Ecology Letters, 24(10), 2219–2237.
Bell, G. (2017) Evolutionary rescue. Annual Review of Ecology, Evolution, and Systematics, 48, 605–627.
Beppler, C., Tekin, E., White, C., Mao, Z., Miller, J.H., Damoiseaux, R. et al. (2017) When more is less: emergent suppressive interactions in three‐drug combinations. BMC Microbiology, 17, 1–9.
Birk, S., Chapman, D., Carvalho, L., Spears, B.M., Andersen, H.E., Argillier, C. et al. (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology & Evolution, 4(8), 1060–1068.
Bowler, D.E., Bjorkman, A.D., Dornelas, M., Myers‐Smith, I.H., Navarro, L.M., Niamir, A. et al. (2020) Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, 2(2), 380–394.
Box, G.E., Hunter, J.S. & Hunter, W.G. (2005) Statistics for experimenters. In: Wiley series in probability and statistics. NJ: Wiley Hoboken.
Boyd, P.W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J., Havenhand, J. et al. (2018) Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Global Change Biology, 24(6), 2239–2261.
Burgess, B.J., Jackson, M.C. & Murrell, D.J. (2022) Are experiment sample sizes adequate to detect biologically important interactions between multiple stressors? Ecology and Evolution, 12(9), e9289.
Catford, J.A., Wilson, J.R., Pyšek, P., Hulme, P.E. & Duncan, R.P. (2022) Addressing context dependence in ecology. Trends in Ecology & Evolution, 37(2), 158–170.
Collins, S., Whittaker, H. & Thomas, M.K. (2022) The need for unrealistic experiments in global change biology. Current Opinion in Microbiology, 68, 102151.
Costello, L. & Fox, J.W. (2022) Decline effects are rare in ecology. Ecology, 103(6), e3680.
Côté, I.M., Darling, E.S. & Brown, C.J. (2016) Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B, 283(1824), 20152592.
Cottingham, K.L., Lennon, J.T. & Brown, B.L. (2005) Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology and the Environment, 3(3), 145–152.
De Laender, F. (2018) Community‐ and ecosystem‐level effects of multiple environmental change drivers: beyond null model testing. Global Change Biology, 24(11), 5021–5030.
Delnat, V., Tran, T.T., Janssens, L. & Stoks, R. (2019) Daily temperature variation magnifies the toxicity of a mixture consisting of a chemical pesticide and a biopesticide in a vector mosquito. Science of the Total Environment, 659, 33–40.
Diamant, E.S., Boyd, S., Lozano‐Huntelman, N.A., Enriquez, V., Kim, A.R., Savage, V.M. et al. (2023) Meta‐analysis of three‐stressor combinations on population‐level fitness reveal substantial higher‐order interactions. Science of the Total Environment, 864, 161163.
Didham, R.K., Tylianakis, J.M., Gemmell, N.J., Rand, T.A. & Ewers, R.M. (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution, 22(9), 489–496.
Dinh, K.V., Albini, D., Orr, J.A., Macaulay, S.J., Rillig, M.C., Borgå, K. et al. (2023) Winter is coming: interactions of multiple stressors in winter and implications for the natural world. Global Change Biology, 29(24), 6834–6845. Available from: https://doi.org/10.1111/gcb.16956.
Duncan, R.P. & Kefford, B.J. (2021) Interactions in statistical models: three things to know. Methods in Ecology and Evolution, 12(12), 2287–2297.
Eisenberg, J.N. & McKone, T.E. (1998) Decision tree method for the classification of chemical pollutants: incorporation of across‐chemical variability and within‐chemical uncertainty. Environmental Science & Technology, 32(21), 3396–3404.
Folt, C., Chen, C., Moore, M. & Burnaford, J. (1999) Synergism and antagonism among multiple stressors. Limnology and Oceanography, 44(3), 864–877.
Grey, V., Smith‐Miles, K., Fletcher, T.D., Hatt, B. & Coleman, R. (2023) Empirical evidence of climate change and urbanization impacts on warming stream temperatures. Water Research, 247, 120703. Available from: https://doi.org/10.1016/j.watres.2023.120703.
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T. et al. (2016) Addition of multiple limiting resources reduces grassland diversity. Nature, 537(7618), 93–96.
He, F., Arora, R. & Mansour, I. (2023) Multispecies assemblages and multiple stressors: synthesizing the state of experimental research in freshwaters. Wiley Interdisciplinary Reviews: Water, p. e1641.
Jackson, M.C., Loewen, C.J., Vinebrooke, R.D. & Chimimba, C.T. (2016) Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis. Global Change Biology, 22(1), 180–189.
Jackson, M.C., Pawar, S. & Woodward, G. (2021) The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends in Ecology & Evolution, 36(5), 402–410.
Johnson, P.C., Barry, S.J., Ferguson, H.M. & Müller, P. (2015) Power analysis for generalized linear mixed models in ecology and evolution. Methods in Ecology and Evolution, 6(2), 133–142.
Kefford, B.J., Nichols, S.J. & Duncan, R.P. (2023) The cumulative impacts of anthropogenic stressors vary markedly along environmental gradients. Global Change Biology, 29(3), 590–602.
Kreyling, J., Schweiger, A.H., Bahn, M., Ineson, P., Migliavacca, M., Morel‐Journel, T. et al. (2018) To replicate, or not to replicate–that is the question: how to tackle nonlinear responses in ecological experiments. Ecology Letters, 21(11), 1629–1638.
Lakens, D. & Caldwell, A.R. (2021) Simulation‐based power analysis for factorial analysis of variance designs. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920951503.
Lange, K., Bruder, A., Matthaei, C.D., Brodersen, J. & Paterson, R.A. (2018) Multiple‐stressor effects on freshwater fish: importance of taxonomy and life stage. Fish and Fisheries, 19(6), 974–983.
Lewis, J.L., Agostini, G., Jones, D.K. & Relyea, R.A. (2021) Cascading effects of insecticides and road salt on wetland communities. Environmental Pollution, 272, 116006.
Liess, M., Liebmann, L., Vormeier, P., Weisner, O., Altenburger, R., Borchardt, D. et al. (2021) Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Research, 201, 117262.
Litchman, E. & Thomas, M.K. (2023) Are we underestimating the ecological and evolutionary effects of warming? Interactions with other environmental drivers may increase species vulnerability to high temperatures. Oikos, 2023(2), e09155.
Lodi, S., Godoy, B.S., Ortega, J.C. & Bini, L.M. (2021) Quality of meta‐analyses in freshwater ecology: a systematic review. Freshwater Biology, 66(5), 803–814.
López Moreira Mazacotte, G.A., Polst, B.H., Gross, E.M., Schmitt‐Jansen, M., Hölker, F. & Hilt, S. (2023) Microcosm experiment combined with process‐based modeling reveals differential response and adaptation of aquatic primary producers to warming and agricultural run‐off. Frontiers in Plant Science, 14, 1120441.
Mack, L., de la Hoz, C.F., Penk, M., Piggott, J., Crowe, T., Hering, D. et al. (2022) Perceived multiple stressor effects depend on sample size and stressor gradient length. Water Research, 226, 119260.
MacLennan, M.M. & Vinebrooke, R.D. (2021) Exposure order effects of consecutive stressors on communities: the role of co‐tolerance. Oikos, 130, 2111–2121.
Moe, S.J., De Schamphelaere, K., Clements, W.H., Sorensen, M.T., Van den Brink, P.J. & Liess, M. (2013) Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental Toxicology and Chemistry, 32(1), 49–61.
Naasz, S., Altenburger, R. & Kühnel, D. (2018) Environmental mixtures of nanomaterials and chemicals: the Trojan‐horse phenomenon and its relevance for ecotoxicity. Science of the Total Environment, 635, 1170–1181.
O'Dea, R.E., Lagisz, M., Jennions, M.D., Koricheva, J., Noble, D.W., Parker, T.H. et al. (2021) Preferred reporting items for systematic reviews and meta‐analyses in ecology and evolutionary biology: a PRISMA extension. Biological Reviews, 96(5), 1695–1722.
Odum, E.P., Finn, J.T. & Franz, E.H. (1979) Perturbation theory and the subsidy‐stress gradient. Bioscience, 29(6), 349–352.
Ormerod, S.J., Dobson, M., Hildrew, A.G. & Townsend, C. (2010) Multiple stressors in freshwater ecosystems. Freshwater Biology, 55, 1–4.
Orr, J.A., Piggott, J.J., Jackson, A.L. & Arnoldi, J. (2021) Scaling up uncertain predictions to higher levels of organisation tends to underestimate change. Methods in Ecology and Evolution, 12(8), 1521–1532.
Orr, J.A., Vinebrooke, R.D., Jackson, M.C., Kroeker, K.J., Kordas, R.L., Mantyka‐Pringle, C. et al. (2020) Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proceedings of the Royal Society B, 287(1926), 20200421.
Outhwaite, C.L., McCann, P. & Newbold, T. (2022) Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605(7908), 97–102.
Pirotta, E., Thomas, L., Costa, D.P., Hall, A.J., Harris, C.M., Harwood, J. et al. (2022) Understanding the combined effects of multiple stressors: a new perspective on a longstanding challenge. Science of the Total Environment, 821, 153322.
Rahel, F.J. & Olden, J.D. (2008) Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22(3), 521–533.
Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T. et al. (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873.
Rillig, M.C., Lehmann, A., Orr, J.A. & Rongstock, R. (2023) Factors of global change affecting plants act at different levels of the ecological hierarchy. The Plant Journal, 117, 1781–1785.
Rillig, M.C., Ryo, M. & Lehmann, A. (2021) Classifying human influences on terrestrial ecosystems. Global Change Biology, 27(11), 2273–2278.
Rillig, M.C., Ryo, M., Lehmann, A., Aguilar‐Trigueros, C.A., Buchert, S., Wulf, A. et al. (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366(6467), 886–890.
Rillig, M.C., van der Heijden, M.G., Berdugo, M., Liu, Y.‐R., Riedo, J., Sanz‐Lazaro, C. et al. (2023) Increasing the number of stressors reduces soil ecosystem services worldwide. Nature Climate Change, 13(5), 478–483.
Romero, G.Q., Marino, N.A., MacDonald, A.A.M., Céréghino, R., Trzcinski, M.K., Mercado, D.A. et al. (2020) Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nature Communications, 11(1), 3215.
Rosenfeld, J., Gonzalez‐Espinosa, P., Jarvis, L., Enders, E., Bayly, M., Paul, A. et al. (2022) Stressor‐response functions as a generalizable model for context dependence. Trends in Ecology & Evolution, 37, 1032–1035.
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R. et al. (2000) Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774.
Schäfer, R.B., Jackson, M., Juvigny‐Khenafou, N., Osakpolor, S.E., Posthuma, L., Schneeweiss, A. et al. (2023) Chemical mixtures and multiple stressors–same but different? Environmental Toxicology and Chemistry, 42, 1915–1936.
Schäfer, R.B. & Piggott, J.J. (2018) Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Global Change Biology, 24(5), 1817–1826.
Schindler, D.W. (1998) Whole‐ecosystem experiments: replication versus realism: the need for ecosystem‐scale experiments. Ecosystems, 1(4), 323–334.
Simmons, B.I., Blyth, P.S., Blanchard, J.L., Clegg, T., Delmas, E., Garnier, A. et al. (2021) Refocusing multiple stressor research around the targets and scales of ecological impacts. Nature Ecology & Evolution, 5(11), 1478–1489.
Song, J., Wan, S., Piao, S., Knapp, A.K., Classen, A.T., Vicca, S. et al. (2019) A meta‐analysis of 1,119 manipulative experiments on terrestrial carbon‐cycling responses to global change. Nature Ecology & Evolution, 3(9), 1309–1320.
Spake, R., Bowler, D.E., Callaghan, C.T., Blowes, S.A., Doncaster, C.P., Antao, L.H. et al. (2023) Understanding ‘it depends’ in ecology: a guide to hypothesising, visualising and interpreting statistical interactions. Biological Reviews, 98(4), 983–1002.
Spears, B.M., Chapman, D.S., Carvalho, L., Feld, C.K., Gessner, M.O., Piggott, J.J. et al. (2021) Making waves. Bridging theory and practice towards multiple stressor management in freshwater ecosystems. Water Research, 196, 116981.
Tekin, E., Diamant, E.S., Cruz‐Loya, M., Enriquez, V., Singh, N., Savage, V.M. et al. (2020) Using a newly introduced framework to measure ecological stressor interactions. Ecology Letters, 23(9), 1391–1403.
Thomas, M.K. & Ranjan, R. (2024) Designing more informative multiple‐driver experiments. Annual Review of Marine Science, 16, 513–536.
Thompson, P.L., MacLennan, M.M. & Vinebrooke, R.D. (2018) An improved null model for assessing the net effects of multiple stressors on communities. Global Change Biology, 24(1), 517–525.
Turschwell, M.P., Connolly, S.R., Schäfer, R.B., De Laender, F., Campbell, M.D., Mantyka‐Pringle, C. et al. (2022) Interactive effects of multiple stressors vary with consumer interactions, stressor dynamics and magnitude. Ecology Letters, 25(6), 1483–1496.
Van De Schoot, R., De Bruin, J., Schram, R., Zahedi, P., De Boer, J., Weijdema, F. et al. (2021) An open source machine learning framework for efficient and transparent systematic reviews. Nature Machine Intelligence, 3(2), 125–133.
Van Moorsel, S.J., Thébault, E., Radchuk, V., Narwani, A., Montoya, J.M., Dakos, V. et al. (2023) Predicting effects of multiple interacting global change drivers across trophic levels. Global Change Biology, 29(5), 1223–1238.
Van Sundert, K., Leuzinger, S., Bader, M.K., Chang, S.X., De Kauwe, M.G., Dukes, J.S. et al. (2023) When things get MESI: the manipulation experiments synthesis initiative—a coordinated effort to synthesize terrestrial global change experiments. Global Change Biology, 29(7), 1922–1938.
Viers, J., Dupré, B. & Gaillardet, J. (2009) Chemical composition of suspended sediments in world Rivers: new insights from a new database. Science of the Total Environment, 407(2), 853–868.
Vinebrooke, R.D., Cottingham, K.L., Norberg, M.S., Dodson, S.I., Maberly, S.C. & Sommer, U. (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co‐tolerance. Oikos, 104(3), 451–457.
Vos, M., Hering, D., Gessner, M.O., Leese, F., Schäfer, R.B., Tollrian, R. et al. (2023) The asymmetric response concept explains ecological consequences of multiple stressor exposure and release. Science of the Total Environment, 872, 162196.
Wood, S.N. (2017) Generalized additive models: an introduction with R. New York: Chapman and Hall/CRC. Available from: https://doi.org/10.1201/9781315370279.
Yankow, M. (1965) Effect of growth inhibitors and their combinations on the tail regeneration of amphibia. Transactions of the New York Academy of Sciences, 27(8 Series II), 878–881.
معلومات مُعتمدة: NE/V001396/1 Natural Environment Research Council
فهرسة مساهمة: Keywords: antagonism; ecology; ecotoxicology; global change biology; research synthesis; synergism
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240626 Latest Revision: 20240628
رمز التحديث: 20240628
DOI: 10.1111/ele.14463
PMID: 38924275
قاعدة البيانات: MEDLINE
الوصف
تدمد:1461-0248
DOI:10.1111/ele.14463