دورية أكاديمية

Measuring gravitational attraction with a lattice atom interferometer.

التفاصيل البيبلوغرافية
العنوان: Measuring gravitational attraction with a lattice atom interferometer.
المؤلفون: Panda CD; Department of Physics, University of California, Berkeley, Berkeley, CA, USA. cpanda@berkeley.edu., Tao MJ; Department of Physics, University of California, Berkeley, Berkeley, CA, USA., Ceja M; Department of Physics, University of California, Berkeley, Berkeley, CA, USA., Khoury J; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA., Tino GM; Dipartimento di Fisica e Astronomia, Università di Firenze, INFN, CNR-INO, Sesto Fiorentino, Italy.; European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy., Müller H; Department of Physics, University of California, Berkeley, Berkeley, CA, USA. hm@berkeley.edu.
المصدر: Nature [Nature] 2024 Jul; Vol. 631 (8021), pp. 515-520. Date of Electronic Publication: 2024 Jun 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth's gravity 1 , the gravitational constant 2 , deviations from Newtonian gravity 3-6 and general relativity 7 . However, using atoms in free fall limits measurement time to a few seconds 8 , and much less when measuring interactions with a small source mass 2,5,6,9 . Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated 10-14 . However, the optical lattice must balance Earth's gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic effects. We measure the attraction of a miniature source mass to be a mass  = 33.3 ± 5.6 stat  ± 2.7 syst  nm s -2 , consistent with Newtonian gravity, ruling out 'screened fifth force' theories 3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s -2 surpasses by more than a factor of four the best similar measurements with atoms in free fall 5,6 . Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges 17,18 , compact gravimetry 19-22 , measuring the gravitational Aharonov-Bohm effect 9,23 and the gravitational constant 2 , and testing whether the gravitational field has quantum properties 24 .
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Peters, A., Chung, K. Y. & Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999). (PMID: 10.1038/23655)
Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014). (PMID: 2496565310.1038/nature13433)
Burrage, C., Copeland, E. J. & Hinds, E. A. Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 3, 042 (2015). (PMID: 10.1088/1475-7516/2015/03/042)
Hamilton, P. et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015). (PMID: 2629395810.1126/science.aaa8883)
Jaffe, M. et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 13, 938–942 (2017). (PMID: 10.1038/nphys4189)
Sabulsky, D. O. et al. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett. 123, 061102 (2019). (PMID: 3149116010.1103/PhysRevLett.123.061102)
Asenbaum, P., Overstreet, C., Kim, M., Curti, J. & Kasevich, M. A. Atom-interferometric test of the equivalence principle at the 10 −12 level. Phys. Rev. Lett. 125, 191101 (2020). (PMID: 3321657710.1103/PhysRevLett.125.191101)
Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 83001 (2013). (PMID: 10.1103/PhysRevLett.111.083001)
Overstreet, C., Asenbaum, P., Curti, J., Kim, M. & Kasevich, M. A. Observation of a gravitational Aharonov-Bohm effect. Science 375, 226–229 (2022). (PMID: 3502563510.1126/science.abl7152)
Panda, C. D. et al. Coherence limits in lattice atom interferometry at the one-minute scale. Nat. Phys. https://doi.org/10.1038/s41567-024-02518-9 (2024).
Xu, V. et al. Probing gravity by holding atoms for 20 seconds. Science 366, 745–749 (2019). (PMID: 3169993710.1126/science.aay6428)
Zhang, X., del Aguila, R. P., Mazzoni, T., Poli, N. & Tino, G. M. Trapped-atom interferometer with ultracold Sr atoms. Phys. Rev. A 94, 043608 (2016). (PMID: 10.1103/PhysRevA.94.043608)
Charrière, R., Cadoret, M., Zahzam, N., Bidel, Y. & Bresson, A. Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A 85, 013639 (2012). (PMID: 10.1103/PhysRevA.85.013639)
Cladé, P. et al. A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave. Europhys. Lett. 71, 730–736 (2005). (PMID: 10.1209/epl/i2005-10163-6)
Wang, J., Hui, L. & Khoury, J. No-go theorems for generalized chameleon field theories. Phys. Rev. Lett. 109, 241301 (2012). (PMID: 2336830210.1103/PhysRevLett.109.241301)
Elder, B. et al. Chameleon dark energy and atom interferometry. Phys. Rev. D 94, 044051 (2016). (PMID: 10.1103/PhysRevD.94.044051)
Tino, G. M. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Technol. 6, 024014 (2021). (PMID: 10.1088/2058-9565/abd83e)
Westphal, T., Hepach, H., Pfaff, J. & Aspelmeyer, M. Measurement of gravitational coupling between millimetre-sized masses. Nature 591, 225–228 (2021). (PMID: 3369255610.1038/s41586-021-03250-7)
Geiger, R., Landragin, A., Merlet, S. & Pereira Dos Santos, F. High-accuracy inertial measurements with cold-atom sensors. AVS Quantum Sci. 2, 024702 (2020). (PMID: 10.1116/5.0009093)
Stray, B. et al. Quantum sensing for gravity cartography. Nature 602, 590–594 (2022). (PMID: 35197616886612910.1038/s41586-021-04315-3)
Janvier, C. et al. Compact differential gravimeter at the quantum projection-noise limit. Phys. Rev. A 105, 022801 (2022). (PMID: 10.1103/PhysRevA.105.022801)
Vovrosh, J., Dragomir, A., Stray, B. & Boddice, D. Advances in portable atom interferometry-based gravity sensing. Sensors 23, 7651 (2023). (PMID: 376881061049065710.3390/s23177651)
Hohensee, M. A., Estey, B., Hamilton, P., Zeilinger, A. & Müller, H. Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment. Phys. Rev. Lett. 108, 230404 (2012). (PMID: 2300392710.1103/PhysRevLett.108.230404)
Carney, D., Müller, H. & Taylor, J. M. Using an atom interferometer to infer gravitational entanglement generation. PRX Quantum 2, 030330 (2021). (PMID: 10.1103/PRXQuantum.2.030330)
Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J. & Weltman, A. Detecting dark energy in orbit: the cosmological chameleon. Phys. Rev. D 70, 123518 (2004). (PMID: 10.1103/PhysRevD.70.123518)
Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004). (PMID: 1552506610.1103/PhysRevLett.93.171104)
Olive, K. A. & Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 43524 (2008). (PMID: 10.1103/PhysRevD.77.043524)
Hinterbichler, K., Khoury, J., Levy, A. & Matas, A. Symmetron cosmology. Phys. Rev. D 84, 103521 (2011). (PMID: 10.1103/PhysRevD.84.103521)
Li, K. et al. Neutron limit on the strongly-coupled chameleon field. Phys. Rev. D 93, 062001 (2016). (PMID: 10.1103/PhysRevD.93.062001)
Cronenberg, G. et al. A gravity of Earth measurement with a qBOUNCE experiment. In European Physical Society Conference on High Energy Physics 408 (Proceedings of Science, 2015).
Yin, P. et al. Experiments with levitated force sensor challenge theories of dark energy. Nat. Phys. 18, 1181–1185 (2022). (PMID: 10.1038/s41567-022-01706-9)
Upadhye, A. Dark energy fifth forces in torsion pendulum experiments. Phys. Rev. D 86, 102003 (2012). (PMID: 10.1103/PhysRevD.86.102003)
Betz, J., Manley, J., Wright, E. M., Grin, D. & Singh, S. Searching for chameleon dark energy with mechanical systems. Phys. Rev. Lett. 129, 131302 (2022). (PMID: 3620642110.1103/PhysRevLett.129.131302)
Kapner, D. J. et al. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007). (PMID: 1735859510.1103/PhysRevLett.98.021101)
Geraci, A. A., Smullin, S. J., Weld, D. M., Chiaverini, J. & Kapitulnik, A. Improved constraints on non-Newtonian forces at 10 microns. Phys. Rev. D 78, 022002 (2008). (PMID: 10.1103/PhysRevD.78.022002)
Tan, W. H. et al. New test of the gravitational inverse-square law at the submillimeter range with dual modulation and compensation. Phys. Rev. Lett. 116, 131101 (2016). (PMID: 2708196410.1103/PhysRevLett.116.131101)
Chen, Y. J. et al. Stronger limits on hypothetical Yukawa interactions in the 30–8000 nm range. Phys. Rev. Lett. 116, 221102 (2016). (PMID: 2731470910.1103/PhysRevLett.116.221102)
Tan, W. H. et al. Improvement for testing the gravitational inverse-square law at the submillimeter range. Phys. Rev, Lett. 124, 051301 (2020). (PMID: 3208393310.1103/PhysRevLett.124.051301)
Lee, J. G., Adelberger, E. G., Cook, T. S., Fleischer, S. M. & Heckel, B. R. New test of the gravitational 1/r 2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020). (PMID: 3221640410.1103/PhysRevLett.124.101101)
Ke, J. et al. Combined test of the gravitational inverse-square law at the centimeter range. Phys. Rev. Lett. 126, 211101 (2021). (PMID: 3411485810.1103/PhysRevLett.126.211101)
Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022). (PMID: 36261551958177510.1038/s41586-022-05197-9)
Weidner, C. A. & Anderson, D. Z. Experimental demonstration of shaken-lattice interferometry. Phys. Rev. Lett. 120, 263201 (2018). (PMID: 3000477410.1103/PhysRevLett.120.263201)
McAlpine, K. E., Gochnauer, D. & Gupta, S. Excited-band Bloch oscillations for precision atom interferometry. Phys. Rev. A 101, 023614 (2020). (PMID: 10.1103/PhysRevA.101.023614)
Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018). (PMID: 10.1038/s41586-018-0599-8)
Eckel, S., Hamilton, P., Kirilov, E., Smith, H. W. & DeMille, D. Search for the electron electric dipole moment using Ω-doublet levels in PbO. Phys. Rev. A 87, 052130 (2013). (PMID: 10.1103/PhysRevA.87.052130)
Haslinger, P. et al. Attractive force on atoms due to blackbody radiation. Nat. Phys. 14, 257–260 (2018). (PMID: 10.1038/s41567-017-0004-9)
Gregoire, M. D., Hromada, I., Holmgren, W. F., Trubko, R. & Cronin, A. D. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry. Phys. Rev. A 92, 052513 (2015). (PMID: 10.1103/PhysRevA.92.052513)
Scheel, S. & Buhmann, S. Y. Casimir-Polder forces on moving atoms. Phys. Rev. A 80, 042902 (2009). (PMID: 10.1103/PhysRevA.80.042902)
Hung, C. L., Zhang, X., Gemelke, N. & Chin, C. Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps. Phys. Rev. A 78, 011604 (2008). (PMID: 10.1103/PhysRevA.78.011604)
Hensley, J. M., Peters, A. & Chu, S. Active low frequency vertical vibration isolation. Rev. Sci. Instrum. 70, 2735–2741 (1999). (PMID: 10.1063/1.1149838)
Zhang, T. et al. Ultrahigh-sensitivity Bragg atom gravimeter and its application in testing Lorentz violation. Phys. Rev. Appl. 20, 14067 (2023). (PMID: 10.1103/PhysRevApplied.20.014067)
Panda, C. D., Tao, M., Ceja, M., Reynoso, A. & Müller, H. Atomic gravimeter robust to environmental effects. Appl. Phys. Lett. 123, 064001 (2023). (PMID: 10.1063/5.0163101)
Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019). (PMID: 10.1038/s42254-019-0117-4)
Goossens, S. et al. High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust. J. Geophys. Res. Planets 125, e2019JE006086 (2020). (PMID: 10.1029/2019JE006086)
Matichard, F. et al. Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: design and production overview. Precis. Eng. 40, 273–286 (2015). (PMID: 10.1016/j.precisioneng.2014.09.010)
Hammad, F., Landry, A. & Mathieu, K. Prospects for testing the inverse-square law and gravitomagnetism using quantum interference. Int. J. Mod. Phys. D 30, 2150004 (2020). (PMID: 10.1142/S0218271821500048)
Harber, D. M., Obrecht, J. M., McGuirk, J. M. & Cornell, E. A. Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate. Phys. Rev. A 72, 033610 (2005). (PMID: 10.1103/PhysRevA.72.033610)
Sorrentino, F. et al. Quantum sensor for atom-surface interactions below 10 μm. Phys. Rev. A 79, 013409 (2009). (PMID: 10.1103/PhysRevA.79.013409)
Balland, Y., Absil, L. & Pereira dos Santos, F. Quectonewton local force sensor. Preprint at https://arxiv.org/abs/2310.14717 (2023).
Billingsley, G., Yamamoto, H. & Zhang, L. Characterization of advanced LIGO core optics. Am. Soc. Precis. Eng. 66, 78–83 (2017).
Turnbaugh, C. et al. High-power near-concentric Fabry–Perot cavity for phase contrast electron microscopy. Rev. Sci. Instrum. 92, 053005 (2021). (PMID: 34243315815943810.1063/5.0045496)
Wolf, P. et al. From optical lattice clocks to the measurement of forces in the Casimir regime. Phys. Rev. A 75, 063608 (2007). (PMID: 10.1103/PhysRevA.75.063608)
Panda, C. D. et al. Measuring gravitational attraction with a lattice atom interferometer. Zenodo https://doi.org/10.5281/zenodo.10995225 (2024).
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240717 Latest Revision: 20240718
رمز التحديث: 20240719
DOI: 10.1038/s41586-024-07561-3
PMID: 38926574
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07561-3