دورية أكاديمية

Synaptic architecture of leg and wing premotor control networks in Drosophila.

التفاصيل البيبلوغرافية
العنوان: Synaptic architecture of leg and wing premotor control networks in Drosophila.
المؤلفون: Lesser E; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Azevedo AW; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Phelps JS; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.; Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland., Elabbady L; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Cook A; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Syed DS; University of California, Santa Barbara, CA, USA., Mark B; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Kuroda S; Department of Neurobiology, Harvard Medical School, Boston, MA, USA., Sustar A; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Moussa A; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Dallmann CJ; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Agrawal S; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Lee SJ; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Pratt B; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA., Skutt-Kakaria K; California Institute of Technology, Pasadena, CA, USA., Gerhard S; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.; UniDesign Solutions LLC, Zurich, Switzerland., Lu R; Zetta AI, LLC, Sherrill, NY, USA., Kemnitz N; Zetta AI, LLC, Sherrill, NY, USA., Lee K; Zetta AI, LLC, Sherrill, NY, USA.; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA., Halageri A; Zetta AI, LLC, Sherrill, NY, USA., Castro M; Zetta AI, LLC, Sherrill, NY, USA., Ih D; Zetta AI, LLC, Sherrill, NY, USA., Gager J; Zetta AI, LLC, Sherrill, NY, USA., Tammam M; Zetta AI, LLC, Sherrill, NY, USA., Dorkenwald S; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.; Computer Science Department, Princeton University, Princeton, NJ, USA., Collman F; Allen Institute for Brain Science, Seattle, WA, USA., Schneider-Mizell C; Allen Institute for Brain Science, Seattle, WA, USA., Brittain D; Allen Institute for Brain Science, Seattle, WA, USA., Jordan CS; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA., Macrina T; Zetta AI, LLC, Sherrill, NY, USA., Dickinson M; California Institute of Technology, Pasadena, CA, USA., Lee WA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA. wei-chung_lee@hms.harvard.edu.; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. wei-chung_lee@hms.harvard.edu., Tuthill JC; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA. tuthill@uw.edu.
المصدر: Nature [Nature] 2024 Jul; Vol. 631 (8020), pp. 369-377. Date of Electronic Publication: 2024 Jun 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Connectome* , Drosophila melanogaster*/anatomy & histology , Drosophila melanogaster*/cytology , Drosophila melanogaster*/physiology , Extremities*/innervation , Extremities*/physiology , Motor Neurons*/physiology , Neural Pathways*/anatomy & histology , Neural Pathways*/cytology , Neural Pathways*/physiology , Synapses*/physiology , Wings, Animal*/innervation , Wings, Animal*/physiology, Animals ; Female ; Male ; Movement/physiology ; Muscles/innervation ; Muscles/physiology ; Nerve Net/anatomy & histology ; Nerve Net/cytology ; Nerve Net/physiology
مستخلص: Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles 1 . MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours 2-6 . Here we use connectomics 7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Update of: bioRxiv. 2024 Apr 28:2023.05.30.542725. doi: 10.1101/2023.05.30.542725. (PMID: 37398440)
References: Kernell, D. The Motoneurone and Its Muscle Fibres (Oxford Univ. Press, 2006).
Marshall, N. J. et al. Flexible neural control of motor units. Nat. Neurosci. 25, 1492–1504 (2022). (PMID: 36216998963343010.1038/s41593-022-01165-8)
Henneman, E., Clamann, H. P., Gillies, J. D. & Skinner, R. D. Rank order of motoneurons within a pool: law of combination. J. Neurophysiol. 37, 1338–1349 (1974). (PMID: 443670410.1152/jn.1974.37.6.1338)
Tresch, M. C., Saltiel, P., d’Avella, A. & Bizzi, E. Coordination and localization in spinal motor systems. Brain Res. Rev. 40, 66–79 (2002). (PMID: 1258990710.1016/S0165-0173(02)00189-3)
Ting, L. H. & Macpherson, J. M. A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. 93, 609–613 (2005). (PMID: 1534272010.1152/jn.00681.2004)
Hug, F., Avrillon, S., Ibáñez, J. & Farina, D. Common synaptic input, synergies and size principle: control of spinal motor neurons for movement generation. J. Physiol. 601, 11–20 (2023). (PMID: 3635389010.1113/JP283698)
Azevedo, A. et al. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature https://doi.org/10.1038/s41586-024-07389-x (2024).
Sherrington, C. S. The Integrative Action of the Nervous System (Yale Univ. Press, 1906).
Lobato-Rios, V. et al. NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. Nat. Methods 19, 620–627 (2022). (PMID: 3554571310.1038/s41592-022-01466-7)
Azevedo, A. W. et al. A size principle for recruitment of Drosophila leg motor neurons. eLife 9, e56754 (2020). (PMID: 32490810734738810.7554/eLife.56754)
Ting, L. H. & McKay, J. L. Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17, 622–628 (2007). (PMID: 1830480110.1016/j.conb.2008.01.002)
Hodson-Tole, E. F. & Wakeling, J. M. Motor unit recruitment for dynamic tasks: current understanding and future directions. J. Comp. Physiol. B 179, 57–66 (2009). (PMID: 1859709510.1007/s00360-008-0289-1)
Wuerker, R. B., McPhedran, A. M. & Henneman, E. Properties of motor units in a heterogeneous pale muscle (m. gastrocnemius) of the cat. J. Neurophysiol. 28, 85–99 (1965). (PMID: 1424479810.1152/jn.1965.28.1.85)
Mcphedran, A. M., Wuerker, R. B. & Henneman, E. Properties of motor units in a homogeneous red muscle (soleus) of the cat. J. Neurophysiol. 28, 71–84 (1965). (PMID: 1424479710.1152/jn.1965.28.1.71)
Pallucchi, I. et al. Molecular blueprints for spinal circuit modules controlling locomotor speed in zebrafish. Nat. Neurosci. 27, 78–89 (2024). (PMID: 3791942310.1038/s41593-023-01479-1)
Song, J. et al. Multiple rhythm-generating circuits act in tandem with pacemaker properties to control the start and speed of locomotion. Neuron 105, 1048–1061 (2020).
Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774 (2021). (PMID: 33400916831269810.1016/j.cell.2020.12.013)
Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023). (PMID: 368205231003010810.7554/eLife.80660)
Kuan, A. T. et al. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat. Neurosci. 23, 1637–1643 (2020).
Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).
Dickinson, M. H. & Tu, M. S. The function of dipteran flight muscle. Comp. Biochem. Physiol. A Physiol. 116, 223–238 (1997). (PMID: 10.1016/S0300-9629(96)00162-4)
Barnes, C. L., Bonnéry, D. & Cardona, A. Synaptic counts approximate synaptic contact area in Drosophila. PLoS ONE 17, e0266064 (2022). (PMID: 35377898897942710.1371/journal.pone.0266064)
Burrows, M. The Neurobiology of an Insect Brain (Oxford Univ. Press, 1996).
Monster, A. W. & Chan, H. Isometric force production by motor units of extensor digitorum communis muscle in man. J. Neurophysiol. 40, 1432–1443 (1977). (PMID: 92573710.1152/jn.1977.40.6.1432)
Lindsay, T., Sustar, A. & Dickinson, M. The function and organization of the motor system controlling flight maneuvers in flies. Curr. Biol. 27, 345–358 (2017). (PMID: 2813281610.1016/j.cub.2016.12.018)
Melis, J. M., Siwanowicz, I. & Dickinson, M. H. Machine learning reveals the control mechanics of an insect wing hinge. Nature 628, 795–803 (2024).
Heide, G. & Götz, K. G. Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles. J. Exp. Biol. 199, 1711–1726 (1996). (PMID: 870857810.1242/jeb.199.8.1711)
Fayyazuddin, A. & Dickinson, M. H. Haltere afferents provide direct, electrotonic input to a steering motor neuron in the blowfly, Calliphora. J. Neurosci. 16, 5225–5232 (1996). (PMID: 8756451657930310.1523/JNEUROSCI.16-16-05225.1996)
Tu, M. S. & Dickinson, M. H. Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. J. Exp. Biol. 192, 207–224 (1994). (PMID: 931765210.1242/jeb.192.1.207)
Newland, P. L. & Kondoh, Y. Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. J. Neurophysiol. 77, 1731–1746 (1997). (PMID: 911423210.1152/jn.1997.77.4.1731)
Sasaki, K. & Burrows, M. Innervation pattern of a pool of nine excitatory motor neurons in the flexor tibiae muscle of a locust hind leg. J. Exp. Biol. 201, 1885–1893 (1998). (PMID: 960087010.1242/jeb.201.12.1885)
Balint, C. N. & Dickinson, M. H. The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. J. Exp. Biol. 204, 4213–4226 (2001). (PMID: 1181564610.1242/jeb.204.24.4213)
Tu, M. S. & Dickinson, M. H. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J. Comp. Physiol. A 178, 813–830 (1996). (PMID: 866729410.1007/BF00225830)
Mendell, L. M. & Henneman, E. Terminals of single Ia fibers: location, density, and distribution within a pool of 300 homonymous motoneurons. J. Neurophysiol. 34, 171–187 (1971). (PMID: 554057710.1152/jn.1971.34.1.171)
Truman, J. W., Schuppe, H., Shepherd, D. & Williams, D. W. Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila. Development 131, 5167–5184 (2004). (PMID: 1545910810.1242/dev.01371)
Lacin, H. et al. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. eLife 8, e43701 (2019). (PMID: 30912745650423210.7554/eLife.43701)
Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. Preprint at bioRxiv https://doi.org/10.1101/2023.06.05.543407 (2024).
Allen, A. M. et al. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 9, e54074 (2020). (PMID: 32314735717397410.7554/eLife.54074)
Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022). (PMID: 35239393894492310.1126/science.abk2432)
Gowda, S. B. M. et al. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc. Natl Acad. Sci. USA 115, E2115–E2124 (2018). (PMID: 29440493583467910.1073/pnas.1713869115)
Lees, K. et al. Actions of agonists, fipronil and ivermectin on the predominant in vivo splice and edit variant (RDLbd, I/V) of the Drosophila GABA receptor expressed in Xenopus laevis oocytes. PLoS ONE 9, e97468 (2014). (PMID: 24823815401963510.1371/journal.pone.0097468)
Liu, W. W. & Wilson, R. I. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc. Natl Acad. Sci. USA 110, 10294–10299 (2013). (PMID: 23729809369084110.1073/pnas.1220560110)
Schneider-Mizell, C. M. et al. Cell-type-specific inhibitory circuitry from a connectomic census of mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.01.23.525290 (2024).
Svara, F. N., Kornfeld, J., Denk, W. & Bollmann, J. H. Volume EM reconstruction of spinal cord reveals wiring specificity in speed-related motor circuits. Cell Rep. 23, 2942–2954 (2018). (PMID: 2987458110.1016/j.celrep.2018.05.023)
Örnung, G., Ottersen, O. P., Cullheim, S. & Ulfhake, B. Distribution of glutamate-, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Exp. Brain Res. 118, 517–532 (1998). (PMID: 950484710.1007/s002210050308)
Cheong, H. S. et al. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila male adult nerve cord connectome. eLife https://doi.org/10.7554/eLife.96084.1 (2024).
Heide, G. Neural mechanisms of flight control in Diptera. BIONA-Rep. 2, 35–52 (1983).
O’Sullivan, A. et al. Multifunctional wing motor control of song and flight. Curr. Biol. 28, 2705–2717 (2018). (PMID: 3014615210.1016/j.cub.2018.06.038)
Whitehead, S. C. et al. Neuromuscular embodiment of feedback control elements in Drosophila flight. Sci. Adv. 8, eabo7461 (2022). (PMID: 36516241975014110.1126/sciadv.abo7461)
Heide, G. Properties of a motor output system involved in the optomotor response in flies. Biol. Cybern. 20, 99–112 (1975). (PMID: 10.1007/BF00327047)
Mark, B. et al. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife https://elifesciences.org/articles/67510 (2021).
Baek, M. & Mann, R. S. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J. Neurosci. 29, 6904–6916 (2009). (PMID: 19474317666560310.1523/JNEUROSCI.1585-09.2009)
Brierley, D. J., Rathore, K., VijayRaghavan, K. & Williams, D. W. Developmental origins and architecture of Drosophila leg motoneurons. J. Comp. Neurol. 520, 1629–1649 (2012). (PMID: 2212093510.1002/cne.23003)
Enriquez, J. et al. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 86, 955–970 (2015). (PMID: 25959734444154610.1016/j.neuron.2015.04.011)
Guan, W. et al. Post-transcriptional regulation of transcription factor codes in immature neurons drives neuronal diversity. Cell Rep. 39, 110992 (2022). (PMID: 35767953947974610.1016/j.celrep.2022.110992)
Balaskas, N., Abbott, L. F., Jessell, T. M. & Ng, D. Positional strategies for connection specificity and synaptic organization in spinal sensory-motor circuits. Neuron 102, 1143–1156 (2019). (PMID: 31076274708529710.1016/j.neuron.2019.04.008)
Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 2012).
Harcombe, E. S. & Wyman, R. J. Output pattern generation by Drosophila flight motoneurons. J. Neurophysiol. 40, 1066–1077 (1977). (PMID: 40980810.1152/jn.1977.40.5.1066)
Hürkey, S. et al. Gap junctions desynchronize a neural circuit to stabilize insect flight. Nature 618, 118–125 (2023). (PMID: 372259991023236410.1038/s41586-023-06099-0)
Binder, M. D., Powers, R. K. & Heckman, C. J. Nonlinear input-output functions of motoneurons. Physiology 35, 31–39 (2020). (PMID: 3179990410.1152/physiol.00026.2019)
Henneman, E., Somjen, G. & Carpenter, D. O. Excitability and inhibitibility of motoneurons of different sizes. J. Neurophysiol. 28, 599–620 (1965). (PMID: 583548710.1152/jn.1965.28.3.599)
Maitin-Shepard, J. et al. google/neuroglancer. Zenodo https://doi.org/10.5281/zenodo.5573294 (2021).
Stürner, T. et al. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. Preprint at bioRxiv https://doi.org/10.1101/2024.06.04.596633 (2024).
Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119–128 (2022). (PMID: 3494980910.1038/s41592-021-01330-0)
Dorkenwald, S. et al. CAVE: Connectome annotation versioning engine. Preprint at bioRxiv https://doi.org/10.1101/2023.07.26.550598 (2023).
Elabbady, L. et al. Perisomatic features enable efficient and dataset wide cell-type classifications across large-scale electron microscopy volumes. Preprint at bioRxiv https://doi.org/10.1101/2022.07.20.499976 (2024).
Miller, A. in Biology of Drosophila Ch. 6 (ed. Demerec, M.) 420–534 (Cold Spring Harbor Laboratory Press, 2006).
Soler, C., Daczewska, M., Da Ponte, J. P., Dastugue, B. & Jagla, K. Coordinated development of muscles and tendons of the Drosophila leg. Development 131, 6041–6051 (2004). (PMID: 1553768710.1242/dev.01527)
Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Li, F. et al. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 9, e62576 (2020). (PMID: 33315010790995510.7554/eLife.62576)
Matsliah, A. et al. Neuronal “parts list” and wiring diagram for a visual system. Preprint at bioRxiv https://doi.org/10.1101/2023.10.12.562119 (2024).
Witvliet, D. et al. Connectomes across development reveal principles of brain maturation. Nature 596, 257–261 (2021). (PMID: 34349261875638010.1038/s41586-021-03778-8)
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://doi.org/10.48550/arXiv.1802.03426 (2020).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). (PMID: 32015543705664410.1038/s41592-019-0686-2)
Venkatasubramanian, L. et al. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. eLife 8, e42692 (2019). (PMID: 30714901639107010.7554/eLife.42692)
Lynn, C. W., Holmes, C. M. & Palmer, S. E. Heavy-tailed neuronal connectivity arises from Hebbian self-organization. Nat. Phys. 20, 484–491 (2024).
Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis (Elsevier Science, 2016).
Harris, R. M., Pfeiffer, B. D., Rubin, G. M. & Truman, J. W. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 4, e04493 (2015). (PMID: 26193122452510410.7554/eLife.04493)
Lacin, H. & Truman, J. W. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system. eLife 5, e13399 (2016). (PMID: 26975248480555210.7554/eLife.13399)
Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila. Cell 187, 2574–2594 (2024).
تواريخ الأحداث: Date Created: 20240626 Date Completed: 20240710 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1038/s41586-024-07600-z
PMID: 38926579
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07600-z