دورية أكاديمية

Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine.

التفاصيل البيبلوغرافية
العنوان: Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine.
المؤلفون: Khan MDFH; Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H2X 1Y4, Canada., Youssef M; Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H2X 1Y4, Canada., Nesdoly S; Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H2X 1Y4, Canada., Kamen AA; Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H2X 1Y4, Canada.
المصدر: Viruses [Viruses] 2024 Jun 11; Vol. 16 (6). Date of Electronic Publication: 2024 Jun 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101509722 Publication Model: Electronic Cited Medium: Internet ISSN: 1999-4915 (Electronic) Linking ISSN: 19994915 NLM ISO Abbreviation: Viruses Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI
مواضيع طبية MeSH: Freeze Drying*/methods , SARS-CoV-2*/immunology , SARS-CoV-2*/chemistry , COVID-19 Vaccines*/immunology , COVID-19 Vaccines*/chemistry , Spike Glycoprotein, Coronavirus*/chemistry , Spike Glycoprotein, Coronavirus*/immunology , Cryoprotective Agents*/chemistry , Cryoprotective Agents*/pharmacology, Trehalose/chemistry ; COVID-19/prevention & control ; COVID-19/virology ; Animals ; Humans ; Mannitol/chemistry ; Sucrose/chemistry ; Vero Cells ; Chlorocebus aethiops ; Sorbitol/chemistry ; Drug Stability ; Histidine/chemistry ; Vesicular stomatitis Indiana virus/genetics ; Vaccines, Synthetic/chemistry ; Vaccines, Synthetic/immunology
مستخلص: The thermostability of vaccines, particularly enveloped viral vectored vaccines, remains a challenge to their delivery wherever needed. The freeze-drying of viral vectored vaccines is a promising approach but remains challenging due to the water removal process from the outer and inner parts of the virus. In the case of enveloped viruses, freeze-drying induces increased stress on the envelope, which often leads to the inactivation of the virus. In this study, we designed a method to freeze-dry a recombinant vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike glycoprotein. Since the envelope of VSV is composed of 50% lipids and 50% protein, the formulation study focused on both the protein and lipid portions of the vector. Formulations were prepared primarily using sucrose, trehalose, and sorbitol as cryoprotectants; mannitol as a lyoprotectant; and histidine as a buffer. Initially, the infectivity of rVSV-SARS-CoV-2 and the cake stability were investigated at different final moisture content levels. High recovery of the infectious viral titer (~0.5 to 1 log loss) was found at 3-6% moisture content, with no deterioration in the freeze-dried cakes. To further minimize infectious viral titer loss, the composition and concentration of the excipients were studied. An increase from 5 to 10% in both the cryoprotectants and lyoprotectant, together with the addition of 0.5% gelatin, resulted in the improved recovery of the infectious virus titer and stable cake formation. Moreover, the secondary drying temperature of the freeze-drying process showed a significant impact on the infectivity of rVSV-SARS-CoV-2. The infectivity of the vector declined drastically when the temperature was raised above 20 °C. Throughout a long-term stability study, formulations containing 10% sugar (sucrose/trehalose), 10% mannitol, 0.5% gelatin, and 10 mM histidine showed satisfactory stability for six months at 2-8 °C. The development of this freeze-drying process and the optimized formulation minimize the need for a costly cold chain distribution system.
References: Biotechnol Bioeng. 2021 Jul;118(7):2649-2659. (PMID: 33837958)
Pharmaceutics. 2022 Feb 17;14(2):. (PMID: 35214162)
Appl Microbiol. 1970 Dec;20(6):935-8. (PMID: 5492441)
BMC Public Health. 2019 Nov 1;19(1):1433. (PMID: 31675948)
Vaccine. 2015 Oct 13;33(42):5507-5519. (PMID: 26364685)
Dev Biol Stand. 1996;87:97-101. (PMID: 8854006)
Bull Pan Am Health Organ. 1989;23(3):299-305. (PMID: 2571379)
J Microbiol Methods. 2006 Aug;66(2):183-93. (PMID: 16632005)
Bull Exp Biol Med. 2018 May;165(1):52-56. (PMID: 29796807)
J Clin Microbiol. 1976 Jul;4(1):1-5. (PMID: 182713)
J Pharm Sci. 2018 Aug;107(8):2070-2078. (PMID: 29709487)
Vaccines (Basel). 2023 Dec 29;12(1):. (PMID: 38250854)
Crit Rev Ther Drug Carrier Syst. 1999;16(1):1-83. (PMID: 10099898)
PLoS Pathog. 2021 Dec 16;17(12):e1010092. (PMID: 34914812)
Poult Sci. 2010 Jun;89(6):1167-70. (PMID: 20460663)
J Clin Microbiol. 1983 Sep;18(3):658-62. (PMID: 6313747)
J Virol. 2014 Nov;88(22):13189-200. (PMID: 25187542)
J Pharm Sci. 2005 Jul;94(7):1427-44. (PMID: 15920775)
J Chromatogr A. 1995 Jun 23;705(1):115-27. (PMID: 7620565)
J Pharm Sci. 2021 Feb;110(2):627-634. (PMID: 33242452)
Appl Microbiol. 1970 Nov;20(5):723-6. (PMID: 4320863)
J Gen Virol. 1972 Dec;17(3):281-8. (PMID: 4346651)
Signal Transduct Target Ther. 2022 May 3;7(1):146. (PMID: 35504917)
Biotechnol Prog. 2004 Jul-Aug;20(4):1113-20. (PMID: 15296437)
Biologicals. 1998 Dec;26(4):309-16. (PMID: 10403034)
Gene Ther. 2001 Sep;8(17):1281-90. (PMID: 11571564)
J Pharm Sci. 1998 Dec;87(12):1615-21. (PMID: 10189276)
Vaccine. 2019 Oct 16;37(44):6696-6706. (PMID: 31548012)
Int J Pharm. 2019 Apr 20;561:66-73. (PMID: 30825554)
Vaccine. 1988 Feb;6(1):12-3. (PMID: 3354252)
Methods Mol Biol. 2022;2452:131-146. (PMID: 35554905)
Vaccine. 2017 Apr 19;35(17):2217-2223. (PMID: 27670076)
Vaccine. 2019 Nov 8;37(47):6996-7002. (PMID: 31288997)
Arch Gesamte Virusforsch. 1970;29(2):257-62. (PMID: 5464034)
Vaccines (Basel). 2023 Apr 14;11(4):. (PMID: 37112753)
NPJ Vaccines. 2022 Jul 25;7(1):82. (PMID: 35879345)
Arch Biochem Biophys. 1994 May 15;311(1):180-90. (PMID: 8185315)
Hum Vaccin Immunother. 2019;15(10):2269-2285. (PMID: 31368826)
معلومات مُعتمدة: RGPIN-2021-02691 Natural Sciences and Engineering Council of Canada; CRC-240394 Canada Research Chair
فهرسة مساهمة: Keywords: COVID-19; CPPs; CQAs; VSV; enveloped viral vector vaccine; freeze-drying; rVSV-SARS-CoV-2; solid formulation; stability; vesicular stomatitis virus; viral vaccine bioprocess
المشرفين على المادة: 0 (COVID-19 Vaccines)
0 (Spike Glycoprotein, Coronavirus)
0 (Cryoprotective Agents)
B8WCK70T7I (Trehalose)
3OWL53L36A (Mannitol)
0 (spike protein, SARS-CoV-2)
57-50-1 (Sucrose)
506T60A25R (Sorbitol)
4QD397987E (Histidine)
0 (Vaccines, Synthetic)
تواريخ الأحداث: Date Created: 20240627 Date Completed: 20240627 Latest Revision: 20240629
رمز التحديث: 20240629
مُعرف محوري في PubMed: PMC11209311
DOI: 10.3390/v16060942
PMID: 38932234
قاعدة البيانات: MEDLINE
الوصف
تدمد:1999-4915
DOI:10.3390/v16060942