دورية أكاديمية

The comparative and functional anatomy of the forelimb muscle architecture of Humboldt's woolly monkey (Lagothrix lagotricha).

التفاصيل البيبلوغرافية
العنوان: The comparative and functional anatomy of the forelimb muscle architecture of Humboldt's woolly monkey (Lagothrix lagotricha).
المؤلفون: Deane AS; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.; Department of Anthropology, Indiana University Indianapolis, Indianapolis, Indiana, USA.; Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa., Muchlinski MN; Anatomical Sciences Center, Oregon Health & Science University, Portland, Oregon, USA., Organ JM; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.; Department of Anthropology, Indiana University Indianapolis, Indianapolis, Indiana, USA., Vereecke E; Department of Development and Regeneration, KU Leuven, Leuven, Belgium., Bistrekova V; ICTA, Department of Environmental Science and Technology, Universitat Autònoma de Barcelona, Barcelona, Spain., Hays L; Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA., Butterfield T; Department of Rehabilitation Science, University of Kentucky College of Health Sciences, Lexington, Kentucky, USA.
المصدر: Anatomical record (Hoboken, N.J. : 2007) [Anat Rec (Hoboken)] 2024 Jun 28. Date of Electronic Publication: 2024 Jun 28.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101292775 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1932-8494 (Electronic) Linking ISSN: 19328486 NLM ISO Abbreviation: Anat Rec (Hoboken) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, 2007-
مستخلص: Humboldt's woolly monkey (Lagothrix lagortricha) is a ceboid primate that more frequently engages in plantigrade quadrupedalism (~89%) but is, like most other members of the subfamily Atelinae, capable of suspensory postures and "tail assisted" brachiation. That taxon's decreased reliance on suspension is reflected in the skeletal anatomy of the upper limb which is less derived relative to more frequently suspensory atelines (Ateles, Brachyteles) but is in many ways (i.e., phalangeal curvature, enlarged joint surfaces, elongated diaphyses) intermediate between highly suspensory and quadrupedal anthropoids. Although it has been suggested that muscle may have morphogenetic primacy with respect to bone this has not been explicitly tested. The present study employs analyses of Lagothrix upper limb muscle fiber length, relative physiological cross-sectional area and relative muscle mass to test whether muscular adaptations for suspensory postures and locomotion in Lagothrix precede adaptive refinements in the skeletal tissues or appear more gradually in conjunction with related skeletal adaptations. Results demonstrate that Lagothrix upper limb musculature is most like committed quadrupeds but that limited aspects of the relative distribution of segmental muscle mass may approach suspensory hylobatids consistent with only a limited adaptive response in musculature prior to bone. Results specific to the shoulder were inconclusive owing to under-representation of quadrupedal shoulder musculature and future work should be focused more specifically on the adaptive and functional morphology of the muscular anatomy and microstructure of the scapulothoracic joint complex.
(© 2024 The Author(s). The Anatomical Record published by Wiley Periodicals LLC on behalf of American Association for Anatomy.)
References: Alba, D., Almécija, S., DeMiguel, D., Fortuny, J., Pérez de los Ríos, M., Robles, J., & Moyà‐Solà, S. (2015). Miocene small‐bodied ape from Eurasia sheds light on hominoid evolution. Science, 350, aab2625. https://doi.org/10.1126/science.aab2625.
Anapol, F. C., & Barry, K. (1996). Fiber architecture of the extensors of the hindlimb in semiterrestrial and arboreal guenons. American Journal of Physical Anthropology, 99, 429–447.
Anapol, F. C., & Gray, J. P. (2003). Fiber architecture of the intrinsic muscles of the shoulder and arm in semiterrestrial and arboreal guenons. American Journal of Physical Anthropology, 122, 51–65.
Anapol, F. C., & Jungers, W. L. (1986). Architectural and histochemical diversity within the quadriceps femoris of the brown lemur (Lemur fulvus). American Journal of Physical Anthropology, 69, 355–375.
Begun, D. R. (2007). Fossil record of Miocene hominoids. In W. Henke & I. Tattersall (Eds.), Handbook of paleoanthropology (pp. 921–977). Springer.
Cant, J. G., Youlatos, D., & Rose, M. D. (2001). Locomotor behavior of Lagothrix lagothricha and Ateles belzebuth in Yasuní National Park, Ecuador: general patterns and nonsuspensory modes. Journal of Human Evolution, 41(2), 141–166. https://doi.org/10.1006/jhev.2001.0485.
Cant, J. G. H., Youlatos, D., & Rose, M. D. (2003). Suspensory locomotion of Lagothrix lagotricha and Ateles belzebuth in Yasuni National Park, Ecuador. Journal of Human Evolution, 44, 685–699.
Carlson, K. J. (2006). Muscle architecture of the common chimpanzee (pan troglodytes): Perspectives for investigating chimpanzee behavior. Primates, 47, 218–229.
Crompton, R. H., Vereecke, E. E., & Thorpe, S. K. S. (2008). Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. Journal of Anatomy, 212, 501–543.
Deane, A. S., & Begun, D. R. (2008). Broken fingers: Retesting locomotor hypotheses for fossil hominoids using fragmentary proximal phalanges and high‐resolution polynomialcurve fitting (HR‐PCF). Journal of Human Evolution, 55, 691–701.
Deane, A. S., Russo, G. A., Muchlinski, M. N., & Organ, J. M. (2014). Caudal vertebral body articular surface morphology correlates with functional tail use in anthropoid primates. Journal of Morphology, 275(11), 1300–1311. https://doi.org/10.1002/jmor.20304.
Dickinson, E., & Hartstone‐Rose, A. (2023). Behavioral correlates of fascicular organization: The confluence of muscle architectural anatomy and function. The Anatomical Record, 1–13. https://doi.org/10.1002/ar.25187.
Doran, D. M. (1992a). The ontogeny of chimpanzee and pygmy chimpanzee locomotor behaviour: A case study of paedomorphism and its behavioural correlates. Journal of Human Evolution, 23, 139–157.
Doran, D. M. (1992b). Comparison of instantaneous and locomotor bout sampling methods: A case study of adult male chimpanzee locomotor behaviour and sub‐strate use. American Journal of Physical Anthropology, 89, 85–99.
Eng, C. M., Ward, S. R., Vinyard, C. J., & Taylor, A. B. (2009). The mechanics of the masticatory apparatus facilitate muscle force production at wide jaw gapes in tree‐gouging marmosets (Callithrix jacchus). Journal of Experimental Biology, 212, 4040–4055.
Fleagle, J. R. (2013). Primate adaptation and evolution. Academic Press.
Gans, C., & Bock, W. F. (1965). IV. The functional significance of muscle architecture – A theoretical analysis. Ergebnisse der Anatomie und Entwicklungsgeschichte, 38, 115–142.
German, R. Z. (1982). The functional morphology of caudal vertebrae in new world monkeys. American Journal of Physical Anthropology, 58, 453–459.
Granatosky, M. C., & Schmitt, D. (2019). The mechanical origins of arm‐swinging. Journal of Human Evolution, 130, 61–71.
Hartstone‐Rose, A., & Santana, S. E. (2018). Behavioral correlates of cranial muscle functional morphology. The Anatomical Record, 301, 197–201.
Hosey, G. R. (2004). How does the zoo environment affect the behaviour of captive primates? Applied Animal Behaviour Science, 90, 107–129.
Hunt, K. D. (1992). Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe Stream National Parks, Tanzania. American Journal of Physical Anthropology, 87, 83–105.
Hunt, K. D. (2004). The special demands of great ape locomotion and posture. In A. E. Russon & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 172–189). Cambridge University Press.
Huq, E., Wall, C. E., & Taylor, A. B. (2015). Epaxial muscle fiber architecture favors enhanced excursion and power in the leaper Galago senegalensis. Journal of Anatomy, 227, 524–540.
Kikuchi, Y. (2010). Comparative analysis of muscle architecture in primate arm and forearm. Anatomia, Histologia, Embryologia, 39, 93–106.
Kikuchi, Y., Takemotoi, H., & Kuraoka, A. (2012). Relationship between humeral geometry and shoulder muscle power among suspensory, knuckle‐walking, and digitigrade/palmigrade quadrupedal primates. Journal of Anatomy, 220(1), 29–41. https://doi.org/10.1111/j.1469-7580.2011.01451.x.
Larson, S. G. (1998). Parallel evolution in the hominoid trunk and forelimb. Evolutionary Anthropology, 6, 87–99.
Leischner, C. L., Crouch, M., Allen, K. L., Marchi, D., Pastor, F., & Hartstone‐Rose, A. (2018). Scaling of primate forearm muscle architecture as it relates to locomotion, posture, and phylogeny. Anatomical Record, 301, 484–495.
MacLatchy, L., Gebo, D., Kityo, R., & Pilbeam, D. (2000). Postcranial functional morphology of Morotopithecus bishopi, with implications for the evolution of modern ape locomotion. Journal of Human Evolution, 39, 159–183.
Marchi, D., Leischner, C. L., Pastor, F., & Hartstone‐Rose, A. (2018). Leg muscle architecture in primates and its correlation with locomotion patterns. Anatomical Record, 301, 515–527.
Mason, G., & Rushen, J. (Eds.). (2006). Stereotypic animal behaviour: Fundamentals and applications to welfare. Cabi.
Mason, G. J. (1993). Age and context affect the stereotypies of caged mink. Behaviour, 127(3‐4), 191–229.
Michilsens, F., Vereecke, E. E., & D'Aouˆt, K. (2009). Functional anatomy of the gibbon forelimb: Adaptations to a brachiating lifestyle. Journal of Anatomy, 215, 335–354.
Morgan, K. N., & Tromborg, C. T. (2007). Sources of stress in captivity. Applied Animal Behaviour Science, 102(3–4), 262–302.
Myatt, J. P., Crompton, R. H., Payne‐Davis, R. C., Vereecke, E. E., Isler, K., Savage, R., D'Août, K., Günther, M. M., & Thorpe, S. K. S. (2012). Functional adaptations in the forelimb muscles of non‐human great apes. Journal of Anatomy, 220, 13–28.
Myatt, J. P., Crompton, R. H., & Thorpe, S. K. S. (2011). Hindlimb muscle architecture in non‐human great apes and a comparison of methods for analysing inter‐species variation. Journal of Anatomy, 219, 150–166.
Oishi, M., Ogihara, N., & Endo, H. (2009). Dimensions of forelimb muscles in orangutans and chimpanzees. Journal of Anatomy, 215, 373–382.
Oishi, M., Ogihara, N., Endo, H., & Asari, M. (2008). Muscle architecture of the upper limb in the orangutan. Primates, 49, 204–209.
Organ, J. M. (2010). Structure and function of platyrrhine caudal vertebrae. Anatomical Record, 293, 730–745.
Organ, J. M., & Lemelin, P. (2011). Tail architecture and function of Cebupithecia sarmientoi, a middle Miocene platyrrhine from La Venta, Colombia. Anatomical Record, 294, 2013–2023.
Organ, J. M., Muchlinski, M. N., & Deane, A. S. (2011). Mechanoreceptivity of prehensile tail skin varies between ateline and cebine primates. Anatomical Record, 294, 2064–2072.
Organ, J. M., Teaford, M. F., & Taylor, A. B. (2009). Functional correlates of fiber architecture of the lateral caudal musculature in prehensile and nonprehensile tails of the Platyrrhini (Primates) and Procyonidae (Carnivora). Anatomical Record, 292, 827–841.
Payne, R. C., Crompton, R. H., Isler, K., Savage, R., Vereecke, E. E., Günther, M. M., Thorpe, S. K., & D'Août, K. (2006). Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture. Journal of Anatomy, 208(6), 709–724. https://doi.org/10.1111/j.1469-7580.2006.00563.x.
Peres, C. A. (1996). Use of space, spatial group structure, and foraging group size of gray woolly monkeys (Lagothrix lagotricha cana) at Urucu, Brazil. In M. A. Norconk, A. L. Rosenberger, & P. A. Garber (Eds.), Adaptive radiations of neotropical primates (pp. 467–488). Plenum Press.
Powell, P. L., Roy, R. R., Kanim, P., Bello, M. A., & Edgerton, V. R. (1984). Predictability of skeletal muscle tension from architectural determinations in Guinea pig hindlimbs. Journal of Applied Physiology, 57, 1715–1721.
Rosenberger, A. L. (1983). Tale of tails: Parallelism and prehensility. American Journal of Physical Anthropology, 60, 103–107.
Rupert, J. E., Joll, J. E., Elkhatib, W., & Organ, J. M. (2018). Mouse hind limb skeletal muscle functional adaptation in a simulated fine branch arboreal habitat. Anatomical Record, 301, 434–440.
Rupert, J. E., Rose, J. A., Organ, J. M., & Butcher, M. T. (2015). Forelimb muscle architecture and myosin isoform composition in the groundhog (Marmota monax). The Journal of Experimental Biology, 218, 194–205.
Sacks, R. D., & Roy, R. R. (1982). Architecture of the hind limb muscles of cats: Functional significance. Journal of Morphology, 173, 185–195.
Schmitt, D., Zeininger, A., & Granatosky, M. (2016). Patterns, variability, and flexibility of hand posture during locomotion in primates. In T. Kivell, P. Lemelin, B. Richmond, & D. Schmitt (Eds.), The Evolution of the Primate Hand Anatomical, Developmental, Functional, and Paleontological Evidence (pp. 345–369). Springer.
Schmitt, D., Rose, M.D. & Turnquist, J.E. (2009). The relationship between arm swinging behavior and postcranial morphology in Ateles and Lagothrix [Abstract]. American Journal of Physical Anthropology, 44, 328.
Smith, R. J. (1994). Regression models for prediction equations. Journal of Human Evolution, 26, 239–244.
Stevenson, P. R., Quinones, M. J., & Ahumada, J. A. (1994). Ecological strategies of woolly monkeys (Lagothrix lagothricha) at La Macarena, Columbia. American Journal of Primatology, 32, 123–140.
Taylor, A. B., & Vinyard, C. J. (2004). Comparative analysis of masseter fiber architecture in tree‐gouging (Callithrix jacchus) and nongouging (Saguinus Oedipus) callitrichids. Journal of Morphology, 261, 276–285.
Taylor, A. B., & Vinyard, C. J. (2009). Jaw‐muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape. Journal of Human Evolution, 57(6), 710–720.
Thorpe, S. K. S., Crompton, R. H., Günther, M. M., Ker, R. F., & McNeill, A. R. (1999). Dimensions and moment arms of the hind and forelimb muscles of common chimpanzees (Pan troglodytes). American Journal of Physical Anthropology, 110, 179–199.
Vanhoof, M. J. M., van Leeuwen, T., & Vereecke, E. E. (2020). The forearm and hand musculature of semi‐terrestrial rhesus macaques (Macaca mulatta) and arboreal gibbons (Fam. Hylobatidae). Part I. Description and comparison of the muscle configuration. Journal of Anatomy, 4, 774–790. https://doi.org/10.1111/joa.13222.
Ward, C. V. (2014). Postcranial and locomotor adaptations of hominoids. In W. Henke & I. Tattersall (Eds.), Handbook of paleoanthropology. Springer.
Walker, S. M., & Schrodt, G. R. (1974). I segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human. Anatomical Record, 178(1), 63. https://doi.org/10.1002/ar.1091780107.
Witmer, L. M. (1995). The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In J. J. Thomason (Ed.), Functional morphology in vertebrate paleontology (pp. 19–33). Cambridge University Press.
Youlatos, D. (1996). Atelines, apes and wrist joints. Folia Primatologica, 67(4), 193–198. https://doi.org/10.1159/000157222.
Youlatos, D. (2000). Functional anatomy of forelimb muscles in Guianan Atelines (Platyrrhini: Primates). Annales des Sciences Naturelles, 21, 137–151.
Young, N., & MacLatchy, L. M. (2004). The phylogenetic position of Morotopithecus. Journal of Human Evolution, 46, 163–184.
Zihlman, A. L., & Bolter, D. R. (2015). Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7466–7471. https://doi.org/10.1073/pnas.1505071112.
فهرسة مساهمة: Keywords: Lagothrix; PCSA; locomotion; muscle architecture; suspensory
تواريخ الأحداث: Date Created: 20240628 Latest Revision: 20240628
رمز التحديث: 20240628
DOI: 10.1002/ar.25514
PMID: 38938152
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-8494
DOI:10.1002/ar.25514