دورية أكاديمية

Characterizing lipid constituents of B. moojeni snake venom: a comparative approach for chemical and biological investigations.

التفاصيل البيبلوغرافية
العنوان: Characterizing lipid constituents of B. moojeni snake venom: a comparative approach for chemical and biological investigations.
المؤلفون: Carvalho NS; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., Nardini V; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., Veronezes RM; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., Maciel JB; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Superior School of Health Sciences, Amazonas State University, Manaus, Amazonas, Brazil., Trabuco AC; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., De Carvalho MF; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., Fontanari C; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil., Sartim MA; Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Superior School of Health Sciences, Amazonas State University, Manaus, Amazonas, Brazil.; Department of Research and Development, Nilton Lins Foundation, Manaus, Brazil., de Moraes LAB; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Brazil., Faccioli LH; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil. faccioli@fcfrp.usp.br.
المصدر: Archives of toxicology [Arch Toxicol] 2024 Jul 01. Date of Electronic Publication: 2024 Jul 01.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0417615 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0738 (Electronic) Linking ISSN: 03405761 NLM ISO Abbreviation: Arch Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مستخلص: Snake venoms are complex mixtures majorly composed of proteins with well-studied biological effects. However, the exploration of non-protein components, especially lipids, remains limited despite their potential for discovering bioactive molecules. This study compares three liquid-liquid lipid extraction methods for both chemical and biological analyses of Bothrops moojeni snake venom. The methods evaluated include the Bligh and Dyer method (methanol, chloroform, water), considered standard; the Acunha method, a modification of the Bligh and Dyer protocol; and the Matyash method (MTBE/methanol/water), featuring an organic phase less dense than the aqueous phase. Lipidomic analysis using liquid chromatography with high-resolution mass spectrometry (LC-HRMS) system revealed comparable values of lipid constituents' peak intensity across different extraction methods. Our results show that all methods effectively extracted a similar quantity of lipid species, yielding approximately 17-18 subclasses per method. However, the Matyash and Acunha methods exhibited notably higher proportions of biologically active lipids compared to the Bligh and Dyer method, particularly in extracting lipid species crucial for cellular structure and function, such as sphingomyelins and phosphatidylinositol-phosphate. In conclusion, when selecting a lipid extraction method, it is essential to consider the study's objectives. For a biological approach, it is crucial to evaluate not only the total quantity of extracted lipids but also their quality and biological activity. The Matyash and Acunha methods show promise in this regard, potentially offering a superior option for extracting biologically active lipids compared to the Bligh and Dyer method.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Acunha T, Nardini V, Faccioli LH (2021) A lipidomics approach reveals new insights into Crotalus durissus terrificus and Bothrops moojeni snake venoms. Arch Toxicol 95:345–353. https://doi.org/10.1007/s00204-020-02896-y. (PMID: 10.1007/s00204-020-02896-y32880718)
Acunha T, Rocha BA, Nardini V et al (2023) Lipidomic profiling of the Brazilian yellow scorpion venom: new insights into inflammatory responses following Tityus serrulatus envenomation. J Toxicol Environ Health A Curr Issues 86:283–295. https://doi.org/10.1080/15287394.2023.2188896. (PMID: 10.1080/15287394.2023.2188896)
Ahmadian M, Duncan RE, Jaworski K et al (2007) Triacylglycerol metabolism in adipose tissue. Future Lipidol 2:229–237. https://doi.org/10.2217/17460875.2.2.229. (PMID: 10.2217/17460875.2.2.229191945152633634)
Aldana J, Romero-otero A, Cala MP (2020) Exploring the lipidome: current lipid extraction techniques for mass spectrometry analysis. Metabolites 10:1–32. https://doi.org/10.3390/metabo10060231. (PMID: 10.3390/metabo10060231)
Amélio FD, Vigerelli H, Rossan Á et al (2021) Bothrops moojeni venom and its components—an overview. J Venom Res 11:26–33. (PMID: 341233628169028)
Andersen CJ (2022) Lipid metabolism in inflammation and immune function. Nutrients 14:2–5. https://doi.org/10.3390/nu14071414. (PMID: 10.3390/nu14071414)
Ashraf MANV (2023) Biochemistry of platelet activating factor. In: StatPearls Publ. https://www.ncbi.nlm.nih.gov/books/NBK557392/ . Accessed 11 Nov 2023.
Bagues A, Goicoechea C (2016) Cannabinoid agonists. Elsevier Inc., Amsterdam. (PMID: 10.1016/B978-0-12-800213-1.00065-1)
Balasubramanian RK, Yen Doan TT, Obbard JP (2013) Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J 215–216:929–936. https://doi.org/10.1016/j.cej.2012.11.063. (PMID: 10.1016/j.cej.2012.11.063)
Baldanzi G, Ragnoli B, Malerba M (2020) Potential role of diacylglycerol kinases in immune-mediated diseases. Clin Sci 134:1637–1658. https://doi.org/10.1042/CS20200389. (PMID: 10.1042/CS20200389)
Bligh EG, Dyer WJ (1959) The National Research Council of Canada a rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. (PMID: 10.1139/y59-09913671378)
Blunsom NJ, Cockcroft S (2020a) Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158471. https://doi.org/10.1016/j.bbalip.2019.05.015. (PMID: 10.1016/j.bbalip.2019.05.01531173893)
Blunsom NJ, Cockcroft S (2020b) CDP-diacylglycerol synthases (CDS): gateway to phosphatidylinositol and cardiolipin synthesis. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00063. (PMID: 10.3389/fcell.2020.00063321179887018664)
Butovich IA, Wojtowicz JC, Molai M (2009) Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J Lipid Res 50:2471–2485. https://doi.org/10.1194/jlr.M900252-JLR200. (PMID: 10.1194/jlr.M900252-JLR200195358182781319)
Cao S, Hu X, Ren S et al (2023) The biological role and immunotherapy of gangliosides and GD3 synthase in cancers. Front Cell Dev Biol 11:1–16. https://doi.org/10.3389/fcell.2023.1076862. (PMID: 10.3389/fcell.2023.1076862)
Chen S, Hoene M, Li J et al (2013) Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A 1298:9–16. https://doi.org/10.1016/j.chroma.2013.05.019. (PMID: 10.1016/j.chroma.2013.05.01923743007)
Coulon D, Faure L, Salmon M et al (2012) Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): Not just precursors of N-acylethanolamines (NAE). Biochimie 94:75–85. https://doi.org/10.1016/j.biochi.2011.04.023. (PMID: 10.1016/j.biochi.2011.04.02321575672)
David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol 1084:193–226. (PMID: 10.1007/978-1-62703-658-0_11240619234676806)
DeLong CJ, Baker PRS, Samuel M et al (2001) Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography. J Lipid Res 42:1959–1968. https://doi.org/10.1016/s0022-2275(20)31524-8. (PMID: 10.1016/s0022-2275(20)31524-811734568)
Dudek J (2017) Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5:1–17. https://doi.org/10.3389/fcell.2017.00090. (PMID: 10.3389/fcell.2017.00090)
Eggers LF, Schwudke D (2016) Lipid extraction: basics of the methyl-tert-butyl ether extraction. Encyclopedia of lipidomics. Springer, Netherlands, Dordrecht, pp 1–3.
Fereidoon S, Ying Z (2010) Lipid oxidation and improving the oxidative stability. Chem Soc Rev 39:4067–4079. https://doi.org/10.1039/b922183m. (PMID: 10.1039/b922183m)
Ferreira SH (1965) a Bradykinin-potentiating factor (Bpf) present in the venom of Bothrops jararaca. Br J Pharmacol Chemother 24:163–169. https://doi.org/10.1111/j.1476-5381.1965.tb02091.x. (PMID: 10.1111/j.1476-5381.1965.tb02091.x143023501704050)
Gillum MP, Zhang D, Zhang X-M et al (2008) N-acylphosphatidylethanolamine, a gut-derived circulating factor induced by fat ingestion, inhibits food intake. Cell 135:813–824. https://doi.org/10.1016/j.cell.2008.10.043. (PMID: 10.1016/j.cell.2008.10.043190417472643061)
Gutiérrez JM, Calvete JJ, Habib AG et al (2017) Snakebite envenoming. Nat Rev Dis Prim 3:17063. https://doi.org/10.1038/nrdp.2017.63. (PMID: 10.1038/nrdp.2017.6328905944)
Hammond GRV, Burke JE (2020) Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol 63:57–67. https://doi.org/10.1016/j.ceb.2019.12.007. (PMID: 10.1016/j.ceb.2019.12.007319724757247936)
Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412. https://doi.org/10.1002/mas.20023. (PMID: 10.1002/mas.2002315389848)
Hancock SE, Ailuri R, Marshall DL et al (2018) Mass spectrometry-directed structure elucidation and total synthesis of ultra-long chain (O-acyl)-ω-hydroxy fatty acids. J Lipid Res 59:1510–1518. https://doi.org/10.1194/jlr.M086702. (PMID: 10.1194/jlr.M086702299075956071768)
Hansen FA, Pedersen-Bjergaard S (2020) Emerging extraction strategies in analytical chemistry. Anal Chem 92:2–15. https://doi.org/10.1021/acs.analchem.9b04677. (PMID: 10.1021/acs.analchem.9b0467731625733)
Kanno K, Wu MK, Scapa EF et al (2007) Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2. Biochim Biophys Acta Mol Cell Biol Lipids 1771:654–662. https://doi.org/10.1016/j.bbalip.2007.04.003. (PMID: 10.1016/j.bbalip.2007.04.003)
Kim S-C, Wang X (2020) Phosphatidic acid: an emerging versatile class of cellular mediators. Essays Biochem 64:533–546. https://doi.org/10.1042/EBC20190089. (PMID: 10.1042/EBC2019008932602549)
Kolesnikov Y, Kretynin S, Bukhonska Y et al (2022) Phosphatidic acid in plant hormonal signaling: from target proteins to membrane conformations. Int J Mol Sci. https://doi.org/10.3390/ijms23063227. (PMID: 10.3390/ijms23063227366137509820356)
Križaj I (2011) Ammodytoxin: a window into understanding presynaptic toxicity of secreted phospholipases A2 and more. Toxicon 58:219–229. https://doi.org/10.1016/j.toxicon.2011.06.009. (PMID: 10.1016/j.toxicon.2011.06.00921726572)
Kunkel MT, Newton AC (2010) Calcium transduces plasma membrane receptor signals to produce diacylglycerol at golgi membranes. J Biol Chem 285:22748–22752. https://doi.org/10.1074/jbc.C110.123133. (PMID: 10.1074/jbc.C110.123133205195142906264)
Lapetina EG, Billah MM, Cuatrecasas P (1981) The phosphatidylinositol cycle and the regulation of arachidonic acid production. Nature 292:367–369. https://doi.org/10.1038/292367a0. (PMID: 10.1038/292367a062657917094967)
Li Y, Ghasemi Naghdi F, Garg S et al (2014) A comparative study: The impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact 13:1–9. https://doi.org/10.1186/1475-2859-13-14. (PMID: 10.1186/1475-2859-13-14243877643880967)
Llorente A, Arora GK, Grenier SF, Emerling BM (2023) PIP kinases: a versatile family that demands further therapeutic attention. Adv Biol Regul 87:100939. https://doi.org/10.1016/j.jbior.2022.100939. (PMID: 10.1016/j.jbior.2022.10093936517396)
Lo TC, Baird MHI (2000) Extraction, liquid–liquid. Kirk-Othmer encyclopedia of chemical technology. Wiley, New Jersey.
Longbottom J, Shearer FM, Devine M et al (2018) Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet 392:673–684. https://doi.org/10.1016/S0140-6736(18)31224-8. (PMID: 10.1016/S0140-6736(18)31224-8300175516115328)
Matyash V, Liebisch G, Kurzchalia TV et al (2008) Lipid extraction by methyl-terf-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200. (PMID: 10.1194/jlr.D700041-JLR200182817232311442)
Morais ICO, Pereira GJS, Orzáez M et al (2015) L-Aminoacid oxidase from Bothrops leucurus venom induces nephrotoxicity via apoptosis and necrosis. PLoS ONE 10:1–14. https://doi.org/10.1371/journal.pone.0132569. (PMID: 10.1371/journal.pone.0132569)
Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2019) Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells. https://doi.org/10.3390/cells8070728. (PMID: 10.3390/cells8070728313151736678812)
Pokotylo I, Kravets V, Martinec J, Ruelland E (2018) The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants. Prog Lipid Res 71:43–53. https://doi.org/10.1016/j.plipres.2018.05.003. (PMID: 10.1016/j.plipres.2018.05.00329842906)
Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445. https://doi.org/10.1146/annurev.biochem.69.1.419. (PMID: 10.1146/annurev.biochem.69.1.41910966465)
Rabionet M, Engel R, Sandhoff R (2023) Structure and function of mammalian sphingolipids in health and disease. Elsevier Inc., Amsterdam. (PMID: 10.1016/B978-0-323-95582-9.00016-4)
Rybin VG, Imbs AB, Demidkova DA, Ermolenko EV (2017) Identification of molecular species of monoalkyldiacylglycerol from the squid Berryteuthis magister using liquid chromatography–APCI high-resolution mass spectrometry. Chem Phys Lipids 202:55–61. https://doi.org/10.1016/j.chemphyslip.2016.11.008. (PMID: 10.1016/j.chemphyslip.2016.11.00827894769)
Saini RK, Prasad P, Shang X, Keum YS (2021) Advances in lipid extraction methods—a review. Int J Mol Sci 22:1–19. https://doi.org/10.3390/ijms222413643. (PMID: 10.3390/ijms222413643)
Sandhoff R, Schulze H, Sandhoff K (2018) Ganglioside metabolism in health and disease. Prog Mol Biol Transl Sci 156:1–62. https://doi.org/10.1016/bs.pmbts.2018.01.002. (PMID: 10.1016/bs.pmbts.2018.01.00229747811)
Skinner CJ, Holmes DJ, Smith TM (1986) The effect of sample design on principal component analysis. J Am Stat Assoc 81:789–798. https://doi.org/10.1080/01621459.1986.10478336. (PMID: 10.1080/01621459.1986.10478336)
Slotte JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52:424–437. https://doi.org/10.1016/j.plipres.2013.05.001. (PMID: 10.1016/j.plipres.2013.05.00123684760)
Taniguchi M, Ueda Y, Matsushita M et al (2020) Deficiency of sphingomyelin synthase 2 prolongs survival by the inhibition of lymphoma infiltration through ICAM-1 reduction. FASEB J 34:3838–3854. https://doi.org/10.1096/fj.201901783RR. (PMID: 10.1096/fj.201901783RR31970839)
Topham MK (2013) Diacylglycerol kinases and phosphatidic acid phosphatases, 2nd edn. Elsevier Inc., Amsterdam.
Tshepelevitsh S, Hernits K, Jenčo J et al (2017) Systematic optimization of liquid–liquid extraction for isolation of unidentified components. ACS Omega 2:7772–7776. https://doi.org/10.1021/acsomega.7b01445. (PMID: 10.1021/acsomega.7b01445314573346644944)
Ulmer CZ, Jones CM, Yost RA et al (2018) Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies. Anal Chim Acta 1037:351–357. https://doi.org/10.1016/j.aca.2018.08.004. (PMID: 10.1016/j.aca.2018.08.004302923116261534)
Wang H, Airola MV, Reue K (2017) How lipid droplets “TAG” along: glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1131–1145. https://doi.org/10.1016/j.bbalip.2017.06.010. (PMID: 10.1016/j.bbalip.2017.06.01028642195)
Wang D, Xiao H, Lyu X et al (2023) Lipid oxidation in food science and nutritional health: a comprehensive review. Oil Crop Sci 8:35–44. https://doi.org/10.1016/j.ocsci.2023.02.002. (PMID: 10.1016/j.ocsci.2023.02.002)
WHO (2020) Ending the neglect to attain the sustainable development goals: a road map for neglected tropical diseases 2021–2030. WHO, Geneva.
WHO (2023) Snakebite envenoming. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming . Accessed 9 Sep 2023.
Wu LC, Pfeiffer DR, Calhoon EA et al (2011) Purification, identification, and cloning of lysoplasmalogenase, the enzyme that catalyzes hydrolysis of the vinyl ether bond of lysoplasmalogen. J Biol Chem 286:24916–24930. https://doi.org/10.1074/jbc.M111.247163. (PMID: 10.1074/jbc.M111.247163215158823137066)
Yacoub T, Rima M, Karam M et al (2020) Antimicrobials from venomous animals: an overview. Molecules 25:2402. https://doi.org/10.3390/molecules25102402. (PMID: 10.3390/molecules25102402324557927287856)
معلومات مُعتمدة: 2021 / 123376 Fundação de Amparo à Pesquisa do Estado de São Paulo; 403066 / 2021-2 National Council for Scientific and Technological Development; 303259/2020-5 National Council for Scientific and Technological Development
فهرسة مساهمة: Keywords: Lipidomics; Liquid chromatography–tandem mass spectrometry (LC-MS/MS); Liquid–liquid extraction (LLE); Venom
تواريخ الأحداث: Date Created: 20240701 Latest Revision: 20240701
رمز التحديث: 20240702
DOI: 10.1007/s00204-024-03809-z
PMID: 38951190
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0738
DOI:10.1007/s00204-024-03809-z