دورية أكاديمية

A Theoretical Investigation for Exploring the Potential Performance of Non-Fullerene Organic Solar Cells Through Side-Chain Engineering Having Diphenylamino Groups to Enhance Photovoltaic Properties.

التفاصيل البيبلوغرافية
العنوان: A Theoretical Investigation for Exploring the Potential Performance of Non-Fullerene Organic Solar Cells Through Side-Chain Engineering Having Diphenylamino Groups to Enhance Photovoltaic Properties.
المؤلفون: Abbas F; Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan., Bousbih R; Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia., Ayub AR; Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China., Zahid S; Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan., Aljohani M; Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia., Amin MA; Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia., Waqas M; Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan., Soliman MS; Department of Electrical Engineering, College of Engineering, Taif University, 21944, Taif, Saudi Arabia., Khera RA; Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan. rasheedahmadkhera@yahoo.com., Jahan N; Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan. nazishjahanuaf@yahoo.com.
المصدر: Journal of fluorescence [J Fluoresc] 2024 Jul 01. Date of Electronic Publication: 2024 Jul 01.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer- Country of Publication: Netherlands NLM ID: 9201341 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4994 (Electronic) Linking ISSN: 10530509 NLM ISO Abbreviation: J Fluoresc Subsets: MEDLINE
أسماء مطبوعة: Publication: Amsterdam : Springer-
Original Publication: New York : Plenum Press, c1991-
مستخلص: The development of ecofriendly fabrication phenomenon is essential requirement for commercialization of non-fullerene acceptors. Recently, end-capped modeling is employed for computational design of five non-fullerene acceptors to elevate various photovoltaic properties. All new molecules are formulated by altering the peripheral acceptors of CH 3 -2F and DFT methodology is employed to explore the opto-electronic, morphological and charge transfer analysis. From the computational investigation, all reported molecules manifested red shifted absorption with remarkable reduced band gap. Among investigated molecules, FA1-FA3 evinced effectively decreased value of band gaps and designed molecules have low excitation energy justifying proficient charge transference. The lower values of binding energy of FA1 and FA2 suggest their facile exciton dissociation leading to improved charge mobility. By blending with J61 donor, FA4 have sufficiently enhanced value of V OC (1.72 eV) and fill factor (0.9228). Energy loss of the model (R) is 0.57 eV and statistical calculation demonstrate that all our modified molecules except FA3 has profoundly reduced energy loss compelling in its pivotal utilization. From accessible supportive outcomes of recent investigation, it is recommended that our modified chromophore exhibit remarkable noteworthy applications in solar cells for forthcoming innovations.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Zhang Q et al (2021) Emerging technologies for green energy conversion and storage. Adv Sustain Syst 5(3):2000152. (PMID: 10.1002/adsu.202000152)
Li Y et al (2018) Flexible and semitransparent organic solar cells. Adv Energy Mater 8(7):1701791. (PMID: 10.1002/aenm.201701791)
Liu C et al (2021) Flexible organic solar cells: Materials, large-area fabrication techniques and potential applications. Nano Energy 89:106399. (PMID: 10.1016/j.nanoen.2021.106399)
Wu J et al (2021) Towards a bright future: The versatile applications of organic solar cells. Mater Rep: Energy 1(4):100062.
Kang H et al (2016) Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv Mater 28(36):7821–7861. (PMID: 10.1002/adma.20160119727345936)
Xu T et al (2021) 15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor. Energy Environ Sci 14(10):5366–5376. (PMID: 10.1039/D1EE01193F)
Cheng P et al (2018) Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics 12(3):131–142. (PMID: 10.1038/s41566-018-0104-9)
Alarfaji SS et al (2023) In silico designing of thieno [2, 3-b] thiophene core-based highly conjugated, fused-ring, near-infrared sensitive non-fullerene acceptors for organic solar cells. ACS Omega 8(5):4767–4781. (PMID: 10.1021/acsomega.2c06877367775709910071)
Waqas M et al (2022) Impact of end-capped modification of MO-IDT based non-fullerene small molecule acceptors to improve the photovoltaic properties of organic solar cells. J Mol Graph Model 116:108255. (PMID: 10.1016/j.jmgm.2022.10825535779337)
Sadiq S et al (2023) Synergistic modification of end groups in Quinoxaline fused core-based acceptor molecule to enhance its photovoltaic characteristics for superior organic solar cells. J Mol Graph Model 123:108518. (PMID: 10.1016/j.jmgm.2023.10851837235903)
Zhong J et al (2022) Nonfused ring electron acceptors for efficient organic solar cells enabled by multiple intramolecular conformational locks. ACS Appl Energy Mater 5(4):5136–5145. (PMID: 10.1021/acsaem.2c00475)
Zhang Y et al (2022) Designing high-performance nonfused ring electron acceptors via synergistically adjusting side chains and electron-withdrawing end-groups. ACS Appl Mater Interfaces 14(18):21287–21294. (PMID: 10.1021/acsami.2c0119035484865)
Luo D et al (2022) Simultaneous tuning of alkyl chains and end groups in non-fused ring electron acceptors for efficient and stable organic solar cells. ACS Appl Mater Interfaces 14(21):24374–24385. (PMID: 10.1021/acsami.2c0372335580336)
Yan Q, Han D, Zhao Y (2013) Main-chain photoresponsive polymers with controlled location of light-cleavable units: from synthetic strategies to structural engineering. Polym Chem 4(19):5026–5037. (PMID: 10.1039/c3py00804e)
Kovvuri J, Islavath N (2024) Molecular modifications in fluorene core for efficient organic photovoltaic cells. J Photochem Photobiol A: Chem 446:115162. (PMID: 10.1016/j.jphotochem.2023.115162)
Wu Y, Zhu W (2013) Organic sensitizers from D–π–A to D-A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem Soc Rev 42(5):2039–2058. (PMID: 10.1039/C2CS35346F23192709)
Jiang Z-Q et al (2018) Recent advances in electron acceptors with ladder-type backbone for organic solar cells. J Mater Chem A 6(36):17256–17287. (PMID: 10.1039/C8TA05440A)
Xu X, Peng Q (2022) Hole/electron transporting materials for nonfullerene organic solar cells. Chem–A Eur J 28(25):e202104453. (PMID: 10.1002/chem.202104453)
Wang X et al (2021) High-performance simple nonfused ring electron acceptors with diphenylamino flanking groups. ACS Appl Mater Interfaces 13(33):39652–39659. (PMID: 10.1021/acsami.1c0959734382764)
Wang J, Zhan X (2020) Fused-ring electron acceptors for photovoltaics and beyond. Acc Chem Res 54(1):132–143. (PMID: 10.1021/acs.accounts.0c0057533284599)
Mehboob MY et al (2021) End-capped molecular engineering of S-shaped hepta-ring-containing fullerene-free acceptor molecules with remarkable photovoltaic characteristics for highly efficient organic solar cells. Energ Technol 9(5):2001090. (PMID: 10.1002/ente.202001090)
Mehboob MY et al (2022) Efficient designing of half-moon-shaped chalcogen heterocycles as non-fullerene acceptors for organic solar cells. J Mol Model 28(5):125. (PMID: 10.1007/s00894-022-05116-935459976)
Mehboob MY et al (2021) First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells. J Phys Chem Solids 157:110202. (PMID: 10.1016/j.jpcs.2021.110202)
Guo X et al (2012) Bithiopheneimide–dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure–property–device performance correlations and comparison to thieno [3, 4-c] pyrrole-4, 6-dione analogues. J Am Chem Soc 134(44):18427–18439. (PMID: 10.1021/ja308158323030837)
Ans M, Paramasivam M, Ayub K, Ludwig R, Zahid M, Xiao X, Iqbal J (2020) Designing alkoxy-induced based high performance near infrared sensitive small molecule acceptors for organic solar cells. J Mol Liq 305:112829.
Orio M, Pantazis DA, Neese F (2009) Density functional theory. Photosynth Res 102:443–453. (PMID: 10.1007/s11120-009-9404-8192385782777204)
Dennington RDII, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS .
Hiscocks J, Frisch MJ (2009) Gaussian 09: IOps Reference. Caricato M, Frisch MJ (eds) Wallingford, CT, USA: Gaussian.
Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57. (PMID: 10.1016/j.cplett.2004.06.011)
Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4(2):297–306. (PMID: 10.1021/ct700248k26620661)
Farrokhpour H, Jouypazadeh H (2017) Description of adenine and cytosine on Au (111) nano surface using different DFT functionals (PW91PW91, wB97XD, M06–2X, M06-L and CAM-B3LYP) in the framework of ONIOM scheme: Non-periodic calculations. Chem Phys 488:1–10. (PMID: 10.1016/j.chemphys.2017.03.001)
Ramalingam S, Periandy S (2011) Spectroscopic investigation, computed IR intensity, Raman activity and vibrational frequency analysis on 3-bromoanisole using HF and DFT (LSDA/MPW1PW91) calculations. Spectrochim Acta A: Mol Biomol Spectrosc 78(2):835–843. (PMID: 10.1016/j.saa.2010.12.04321216183)
Garcı́a-Vela A (1999) A test of the accuracy of the partially-separable time-dependent self-consistent-field approach. J Chem Phys 111(18):8286–8297. (PMID: 10.1063/1.480172)
Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on the generalized born approximation with asymmetric descreening. J Chem Theory Comput 5(9):2447–2464. (PMID: 10.1021/ct900312z26616625)
Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. (PMID: 10.1002/jcc.2288522162017)
Tenderholt AL (2019) PyMOlyze: a program to analyze quantum chemistry calculations.
Waqas M et al (2022) End-group modification of terminal acceptors on benzothiadiazole-based BT2F-IC4F molecule to establish efficient organic solar cells. J Mol Liq 368:120770. (PMID: 10.1016/j.molliq.2022.120770)
Majeed M et al (2023) Modified optoelectronic parameters by end-group engineering of ADA type non-fullerene-based small symmetric acceptors constituting IBDT core for high-performance photovoltaics. J Phys Chem Solids 181:111495. (PMID: 10.1016/j.jpcs.2023.111495)
Paramasivam M, Chitumalla RK, Singh SP, Islam A, Han L, Jayathirtha Rao V, Bhanuprakash K (2015) Tuning the photovoltaic performance of benzocarbazole-based sensitizers for dye-sensitized solar cells: a joint experimental and theoretical study of the influence of π-spacers. J Phys Chem C 119(30):17053–17064.
Waqas M et al (2022) Designing of symmetrical ADA type non-fullerene acceptors by side-chain engineering of an indacenodithienothiophene (IDTT) core based molecule: A computational approach. Comput Theor Chem 1217:113904. (PMID: 10.1016/j.comptc.2022.113904)
Paramasivam M, Kanvah S (2016) Rational tuning of AIEE active coumarin based α-cyanostilbenes toward far-red/NIR region using different π-spacer and acceptor units. J Phys Chem C 120(20):10757–10769.
Coropceanu V et al (2019) Charge-transfer electronic states in organic solar cells. Nat Rev Mater 4(11):689–707. (PMID: 10.1038/s41578-019-0137-9)
Maqsood MH et al (2023) End-cap modeling on the thienyl-substituted benzodithiophene trimer-based donor molecule for achieving higher photovoltaic performance. J Mol Graph Model 124:108550. (PMID: 10.1016/j.jmgm.2023.10855037331259)
Ishtiaq M et al (2023) Theoretical designing of symmetrical non-fullerene acceptor molecules by end-capped modification for promising photovoltaic properties of organic solar cells. J Mol Liq 386:122473. (PMID: 10.1016/j.molliq.2023.122473)
Zhou Z et al (2020) Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv Mater 32(4):1906324. (PMID: 10.1002/adma.201906324)
Ans M, Iqbal J, Ayub K, Ali E, Eliasson B (2019) Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells. Mater Sci Semicond Process 94:97–106.
Zhou H, Yang L, You W (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45(2):607–632. (PMID: 10.1021/ma201648t)
Yin Y et al (2019) Fusion or non-fusion of quasi-two-dimensional fused perylene diimide acceptors: the importance of molecular geometry for fullerene-free organic solar cells. J Mater Chem A 7(48):27493–27502. (PMID: 10.1039/C9TA10174H)
Zahoor A et al (2023) A DFT study for improving the photovoltaic performance of organic solar cells by designing symmetric non-fullerene acceptors by quantum chemical modification on pre-existed LC81 molecule. J Mol Graph Model 125:108613. (PMID: 10.1016/j.jmgm.2023.10861337659133)
Rehman Fu et al (2023) Approach toward low energy loss in symmetrical nonfullerene acceptor molecules inspired by insertion of different π-spacers for developing efficient organic solar cells. ACS Omega 8(46):43792–43812. (PMID: 10.1021/acsomega.3c056653802735210666235)
Majeed M, Waqas M, Aloui Z, Essid M, Ibrahim MA, Khera RA, Shaban M, Ans M (2023) Exploring the electronic, optical, and charge transfer properties of ADA-type IDTV-ThIC-based molecules to enhance photovoltaic performance of organic solar cells. ACS omega, 8(48):45384–45404.
Xu H et al (2020) Hole transport layers for organic solar cells: Recent progress and prospects. J Mater Chem A 8(23):11478–11492. (PMID: 10.1039/D0TA03511D)
Zhan C, Yao J (2016) More than conformational “twisting” or “coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem Mater 28(7):1948–1964. (PMID: 10.1021/acs.chemmater.5b04339)
Zubair H et al (2023) Effect of tailoring π-linkers with extended conjugation on the SJ-IC molecule for achieving high V OC and improved charge mobility towards enhanced photovoltaic applications. RSC Adv 13(37):26050–26068. (PMID: 10.1039/D3RA03317A3766420010472344)
Collins SD et al (2017) Small is powerful: recent progress in solution-processed small molecule solar cells. Adv Energy Mater 7(10):1602242. (PMID: 10.1002/aenm.201602242)
Mehboob MY et al (2021) Quantum chemical design of near-infrared sensitive fused ring electron acceptors containing selenophene as π-bridge for high-performance organic solar cells. J Phys Org Chem 34(8):e4204. (PMID: 10.1002/poc.4204)
Rehman FU et al (2023) High-efficiency and low-energy-loss organic solar cells enabled by tuning the end group modification of the terthiophene-based acceptor molecules to enhance photovoltaic properties. ACS Omega 8(45):42492–42510. (PMID: 10.1021/acsomega.3c051763802470910652832)
Mehboob MY et al (2020) Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells. J Theor Comput Chem 19(08):2050034. (PMID: 10.1142/S0219633620500340)
Ali R et al (2023) An approach towards low energy loss by end-capped modification of A2-D-A1-D-A2-type molecules for tuning the photovoltaic properties of organic solar cells. J Comput Biophys Chem 22(8):1013–1040. (PMID: 10.1142/S2737416523420085)
Brédas J-L et al (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42(11):1691–1699. (PMID: 10.1021/ar900099h19653630)
Mehboob MY et al (2020) Designing N-phenylaniline-triazol configured donor materials with promising optoelectronic properties for high-efficiency solar cells. Comput Theor Chem 1186:112908. (PMID: 10.1016/j.comptc.2020.112908)
Mehboob MY et al (2021) Designing of benzodithiophene core-based small molecular acceptors for efficient non-fullerene organic solar cells. Spectrochim Acta A: Mol Biomol Spectrosc 244:118873. (PMID: 10.1016/j.saa.2020.11887332889342)
Sun Z-Z et al (2019) Probing effects of molecular conformation on the electronic and charge transport properties in two-and three-dimensional small molecule hole-transporting materials: a theoretical investigation. Phys Chem Chem Phys 21(27):15206–15214. (PMID: 10.1039/C9CP01986C31250869)
Naeem N, Shehzad RA, Ans M, Akhter MS, Iqbal J (2022) Dopant free triphenylamine‐based hole transport materials with excellent photovoltaic properties for high‐performance perovskite solar cells. Energ Technol 10(2):2100838.
Stoltzfus DM et al (2016) Charge generation pathways in organic solar cells: assessing the contribution from the electron acceptor. Chem Rev 116(21):12920–12955. (PMID: 10.1021/acs.chemrev.6b0012627341081)
Zhu L et al (2021) Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low-Driving-Force Organic Solar Cells. Angew Chem 133(28):15476–15481. (PMID: 10.1002/ange.202105156)
Zubair H et al (2024) A computational insight into enhancement of photovoltaic properties of non-fullerene acceptors by end-group modulations in the structural framework of INPIC molecule. J Mol Graph Model 126:108664. (PMID: 10.1016/j.jmgm.2023.10866437948853)
Rashid EU et al (2022) Synergistic end-capped engineering on non-fused thiophene ring-based acceptors to enhance the photovoltaic properties of organic solar cells. RSC Adv 12(20):12321–12334. (PMID: 10.1039/D2RA00851C354803539036051)
Waqas M et al (2023) Theoretical framework for achieving high Voc in non-fused non-fullerene terthiophene-based end-capped modified derivatives for potential applications in organic photovoltaics. RSC Adv 13(11):7535–7553. (PMID: 10.1039/D3RA00038A369085289993241)
Zang Z et al (2022) Charge transfer processes via tandem modification of efficient non-fullerene acceptors for organic solar cells. Sol Energy 231:503–515. (PMID: 10.1016/j.solener.2021.11.078)
Yong X, Zhang J (2013) Theoretical investigations for organic solar cells. Mater Technol 28(1–2):40–64. (PMID: 10.1179/1753555712Y.0000000041)
Kim BG et al (2013) Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv Func Mater 23(4):439–445. (PMID: 10.1002/adfm.201201385)
Aboulouard A et al (2021) New non-fullerene electron acceptors-based on quinoxaline derivatives for organic photovoltaic cells: DFT computational study. Synth Met 279:116846. (PMID: 10.1016/j.synthmet.2021.116846)
Ali S, Akhter MS, Waqas M, Zubair H, Bhatti HN, Mahal A, Shawky AM, Alkhouri A, Khera RA (2024) End-capped engineering of Quinoxaline core-based non-fullerene acceptor materials with improved power conversion efficiency. J Mol Graph Model 127:108699.
Qi B, Zhang Z-G, Wang J (2015) Uncovering the role of cathode buffer layer in organic solar cells. Sci Rep 5(1):7803. (PMID: 10.1038/srep07803255886234295095)
Chatterjee S et al (2020) Correlation between the dipole moment of nonfullerene acceptors and the active layer morphology of green-solvent-processed P3HT-based organic solar cells. ACS Sustain Chem Eng 8(51):19013–19022. (PMID: 10.1021/acssuschemeng.0c07114)
Brebels J et al (2017) High dielectric constant conjugated materials for organic photovoltaics. J Mater Chem A 5(46):24037–24050. (PMID: 10.1039/C7TA06808E)
Carsten B et al (2011) Examining the effect of the dipole moment on charge separation in donor–acceptor polymers for organic photovoltaic applications. J Am Chem Soc 133(50):20468–20475. (PMID: 10.1021/ja208642b22077184)
Hameed S et al (2023) Quantum Chemical Approach of Hexaammine (NH3) 6 complexant with alkali and alkaline earth metals for their potential use as NLO materials. J Mol Graph Model 123:108505. (PMID: 10.1016/j.jmgm.2023.10850537220700)
Han G, Yi Y, Shuai Z (2018) From molecular packing structures to electronic processes: theoretical simulations for organic solar cells. Adv Energy Mater 8(28):1702743. (PMID: 10.1002/aenm.201702743)
Mahmood A et al (2019) First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: manipulation of noncovalent interactions. Phys Chem Chem Phys 21(4):2128–2139. (PMID: 10.1039/C8CP05763J30644477)
Idrees A et al (2023) Strategies toward end-group engineering of chrysene core-based non-fullerene acceptors for high performance organic solar cells: a DFT study. J Comput Biophys Chem 22(8):1041–1066. (PMID: 10.1142/S2737416523420097)
Shao Y et al (2022) Theoretical exploration of diverse electron-deficient core and terminal groups in A-DA′ D–A type non-fullerene acceptors for organic solar cells. New J Chem 46(7):3370–3382. (PMID: 10.1039/D1NJ04571G)
Brus VV et al (2019) Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv Mater 31(30):1900904. (PMID: 10.1002/adma.201900904)
Chen J et al (2023) Recent research progress of organic small-molecule semiconductors with high electron mobilities. Adv Mater 35(11):2210772. (PMID: 10.1002/adma.202210772)
Mubarik A et al (2023) Theoretical design and evaluation of efficient small donor molecules for organic solar cells. J Mol Model 29(12):373. (PMID: 10.1007/s00894-023-05782-337957312)
Ans M, Iqbal J, Ayub K, Ali E, Eliasson B (2019) Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells. Mater Sci Semicond Process 94:97–106.
Paramasivam M, Gupta A, Babu NJ, Bhanuprakash K, Bhosale SV, Rao VJ (2016) Funnel shaped molecules containing benzo/pyrido [1, 2, 5] thiadiazole functionalities as peripheral acceptors for organic photovoltaic applications. RSC Adv 6(71):66978–66989.
Noor T, Waqas M, Shaban M, Hameed S, Ateeq-ur-Rehman, Ahmed SB, Alrafai HA, Al-Saeedi SI, Ibrahim MA, Hadia NM, Khera RA (2024) Designing Thieno[3,4-c]pyrrole-4,6-dione Core-Based, A 2 –D–A 1 –D–A 2 -type acceptor molecules for promising photovoltaic parameters in organic photovoltaic cells. ACS Omega.
Abid Z, Ali L, Shahid M, Nielsen CB, Altaf M, Min J, Ashraf RS (2024) Quantum modelling of multi-directional fused-ring electron acceptors for organic photovoltaics. J Phys Chem Solids 187:111837.
Ishtiaq M et al (2024) Structural modification of ACA configured X-PCIC acceptor molecule for efficient photovoltaic properties with low energy loss in organic solar cells. J Mol Graph Model 129:108722. (PMID: 10.1016/j.jmgm.2024.10872238377792)
Zhang Y, Yu C, Shan T, Chen Y, Wang Y, Xie M, Li T, Yang Z, Zhong H (2022) Solvent-assisted conformational interconversion of an organic semiconductor with multiple non-covalent interactions. Cell Rep Phys Sci 3(3).
Nwadiaru OV (2017) Design and characterization of organic solar cells based on non-fullerene acceptors.
Ans M, Iqbal J, Ahmad Z, Muhammad S, Hussain R, Eliasson B, Ayub K (2018) Designing three‐dimensional (3D) non‐fullerene small molecule acceptors with efficient photovoltaic parameters. ChemistrySelect 3(45):12797–12804.
Fatima R, Ans M, Iqbal S, Alanazi MM, Iqbal J (2024) Rational designing of derivatives of quinoline and iso-quinoline based hole transport materials for antimony chalcogenide and perovskite solar cells. Colloids Surf A Physicochem Eng Asp 134363.
Ijaz R, Waqas M, Mahal A, Essid M, Zghab I, Khera RA, Alotaibi HF, Al-Haideri M, Alshomrany AS, Zahid S, Alatawi NS (2024) Tuning the optoelectronic properties of selenophene-diketopyrrolopyrrole-based non-fullerene acceptor to obtain efficient organic solar cells through end-capped modification. J Mol Grap Modell 108745.
Schlenker CW, Thompson ME (2011) The molecular nature of photovoltage losses in organic solar cells. Chem Commun 47(13):3702–3716. (PMID: 10.1039/c0cc04020g)
Zhang G et al (2020) Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat Commun 11(1):3943. (PMID: 10.1038/s41467-020-17867-1327700687414148)
Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9(2):391–410. (PMID: 10.1039/C5EE02871J)
Liu Y et al (2022) Managing challenges in organic photovoltaics: properties and roles of donor/acceptor interfaces. Adv Func Mater 32(43):2206707. (PMID: 10.1002/adfm.202206707)
Sial M, Zahid WA, Khalid U, Imtiaz A, Somaily HH, Hossain I, Ans M, Sabir MZ, Iqbal J (2024) Dithieno azepine-based hole-transporting materials to enhance photovoltaic properties of perovskite solar cells (PSCs). Colloids Surf A Physicochem Eng Asp 691:133882.
Wang L et al (2024) Alkoxy substitution on simple non-fused electron acceptors for tuning the photoelectric properties of organic solar cells. Int J Quantum Chem 124(1):e27254. (PMID: 10.1002/qua.27254)
Chen X-W et al (2017) Ternary organic solar cells with coumarin7 as the donor exhibiting greater than 10% power conversion efficiency and a high fill factor of 75%. ACS Appl Mater Interfaces 9(35):29907–29916. (PMID: 10.1021/acsami.7b0770428809535)
Saeed MU et al (2023) Correction to: Impact of end-group modifications and planarity on BDP-based non-fullerene acceptors for high-performance organic solar cells by using DFT approach. J Mol Model 29(3):64. (PMID: 10.1007/s00894-022-05403-536753004)
Jaffar K et al (2022) Quantum chemical study of end-capped acceptor and bridge on triphenyl diamine based molecules to enhance the optoelectronic properties of organic solar cells. Polymer 245:124675. (PMID: 10.1016/j.polymer.2022.124675)
Ji Y et al (2020) Energy loss in organic solar cells: mechanisms, strategies, and prospects. Solar RRL 4(7):2000130. (PMID: 10.1002/solr.202000130)
Menke SM et al (2018) Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule 2(1):25–35. (PMID: 10.1016/j.joule.2017.09.020)
Zhang J et al (2018) Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy 3(9):720–731. (PMID: 10.1038/s41560-018-0181-5)
Zhang Z et al (2021) Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond 42(3):030501. (PMID: 10.1088/1674-4926/42/3/030501)
Lee M-H (2022) Identifying correlation between the open-circuit voltage and the frontier orbital energies of non-fullerene organic solar cells based on interpretable machine-learning approaches. Sol Energy 234:360–367. (PMID: 10.1016/j.solener.2022.02.010)
فهرسة مساهمة: Keywords: End capped engineering; Frontier molecular orbital; Red shifted absorption; Reduced density gradient
تواريخ الأحداث: Date Created: 20240701 Latest Revision: 20240701
رمز التحديث: 20240702
DOI: 10.1007/s10895-024-03805-7
PMID: 38951306
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4994
DOI:10.1007/s10895-024-03805-7