دورية أكاديمية

Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration.

التفاصيل البيبلوغرافية
العنوان: Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration.
المؤلفون: Lin Y; Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA., Pal DS; Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. dhimanpal8@gmail.com., Banerjee P; Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA., Banerjee T; Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA., Qin G; Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA., Deng Y; Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA., Borleis J; Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA., Iglesias PA; Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA., Devreotes PN; Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. pnd@jhmi.edu.; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. pnd@jhmi.edu.
المصدر: Nature cell biology [Nat Cell Biol] 2024 Jul; Vol. 26 (7), pp. 1062-1076. Date of Electronic Publication: 2024 Jul 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Macmillan Magazines Ltd., [1999-
مواضيع طبية MeSH: Cell Polarity* , Dictyostelium*/metabolism , Dictyostelium*/genetics , Actomyosin*/metabolism , ras Proteins*/metabolism , ras Proteins*/genetics , Cell Movement*, HL-60 Cells ; Humans ; Macrophages/metabolism ; Myosin Type II/metabolism ; Myosin Type II/genetics ; Neutrophils/metabolism ; ras GTPase-Activating Proteins/metabolism ; ras GTPase-Activating Proteins/genetics ; Animals ; Chemotaxis ; Protozoan Proteins/metabolism ; Protozoan Proteins/genetics ; Actins/metabolism ; Computer Simulation ; Mice ; Signal Transduction
مستخلص: Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Update of: bioRxiv. 2023 Sep 01:2023.08.30.555648. doi: 10.1101/2023.08.30.555648. (PMID: 37693515)
References: Kolch, W., Berta, D. & Rosta, E. Dynamic regulation of RAS and RAS signaling. Biochem. J. 480, 1–23 (2023). (PMID: 3660728110.1042/BCJ20220234)
Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457–2467 (2012). (PMID: 22589270335496110.1158/0008-5472.CAN-11-2612)
Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017). (PMID: 28666118555561010.1016/j.cell.2017.06.009)
Pal, D. S. et al. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev. Cell 58, 1170–1188 (2023). (PMID: 372207481052433710.1016/j.devcel.2023.04.019)
Sasaki, A. T., Chun, C., Takeda, K. & Firtel, R. A. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol. 167, 505–518 (2004). (PMID: 15534002217249010.1083/jcb.200406177)
Kae, H., Lim, C. J., Spiegelman, G. B. & Weeks, G. Chemoattractant-induced Ras activation during Dictyostelium aggregation. EMBO Rep. 5, 602–606 (2004). (PMID: 15143344129907110.1038/sj.embor.7400151)
Kortholt, A., Keizer-Gunnink, I., Kataria, R. & Van Haastert, P. J. Ras activation and symmetry breaking during Dictyostelium chemotaxis. J. Cell Sci. 126, 4502–4513 (2013). (PMID: 2388694810.1242/jcs.132340)
Zhang, S., Charest, P. G. & Firtel, R. A. Spatiotemporal regulation of Ras activity provides directional sensing. Curr. Biol. 18, 1587–1593 (2008). (PMID: 18948008259093110.1016/j.cub.2008.08.069)
Devreotes, P. N. et al. Excitable signal transduction networks in directed cell migration. Annu. Rev. Cell Dev. Biol. 33, 103–125 (2017). (PMID: 28793794579205410.1146/annurev-cellbio-100616-060739)
Fukushima, S., Matsuoka, S. & Ueda, M. Excitable dynamics of Ras triggers spontaneous symmetry breaking of PIP3 signaling in motile cells. J. Cell Sci. 132, jcs224121 (2019). (PMID: 30745337643271310.1242/jcs.224121)
Li, X. et al. Mutually inhibitory Ras-PI(3,4)P(2) feedback loops mediate cell migration. Proc. Natl Acad. Sci. USA 115, E9125–E9134 (2018). (PMID: 30194235616681210.1073/pnas.1809039115)
Li, X., Miao, Y., Pal, D. S. & Devreotes, P. N. Excitable networks controlling cell migration during development and disease. Semin. Cell Dev. Biol. 100, 133–142 (2020). (PMID: 3183628910.1016/j.semcdb.2019.11.001)
Pal, D. S., Li, X., Banerjee, T., Miao, Y. & Devreotes, P. N. The excitable signal transduction networks: movers and shapers of eukaryotic cell migration. Int. J. Dev. Biol. 63, 407–416 (2019). (PMID: 31840779695698310.1387/ijdb.190265pd)
Hennig, A., Markwart, R., Esparza-Franco, M. A., Ladds, G. & Rubio, I. Ras activation revisited: role of GEF and GAP systems. Biol. Chem. 396, 831–848 (2015). (PMID: 2578168110.1515/hsz-2014-0257)
Insall, R. H., Borleis, J. & Devreotes, P. N. The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr. Biol. 6, 719–729 (1996). (PMID: 879329810.1016/S0960-9822(09)00453-9)
Suire, S. et al. GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. EMBO J. 31, 3118–3129 (2012). (PMID: 22728827340001810.1038/emboj.2012.167)
Xu, X., Wen, X., Moosa, A., Bhimani, S. & Jin, T. Ras inhibitor CAPRI enables neutrophil-like cells to chemotax through a higher-concentration range of gradients. Proc. Natl Acad. Sci. USA 118, e2002162118 (2021). (PMID: 34675073863942610.1073/pnas.2002162118)
Xu, X. et al. GPCR-controlled membrane recruitment of negative regulator C2GAP1 locally inhibits Ras signaling for adaptation and long-range chemotaxis. Proc. Natl Acad. Sci. USA 114, E10092–E10101 (2017). (PMID: 29109256570326910.1073/pnas.1703208114)
Charest, P. G. et al. A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev. Cell 18, 737–749 (2010). (PMID: 20493808289388710.1016/j.devcel.2010.03.017)
Cai, H. et al. Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. J. Cell Biol. 190, 233–245 (2010). (PMID: 20660630293028210.1083/jcb.201001129)
Edwards, M. et al. Insight from the maximal activation of the signal transduction excitable network in Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 115, E3722–E3730 (2018). (PMID: 29602807591081010.1073/pnas.1710480115)
Xu, X. et al. Membrane targeting of C2GAP1 enables Dictyostelium discoideum to sense chemoattractant gradient at a higher concentration range. Front. Cell Dev. Biol. 9, 725073 (2021). (PMID: 34395450836260210.3389/fcell.2021.725073)
Xu, X. et al. C2GAP2 is a common regulator of Ras signaling for chemotaxis, phagocytosis, and macropinocytosis. Front. Immunol. 13, 1075386 (2022). (PMID: 36524124974519610.3389/fimmu.2022.1075386)
Bloomfield, G. et al. Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium. eLife 4, e04940 (2015). (PMID: 25815683437452610.7554/eLife.04940)
Sawada, S. et al. Identification of NF1 mutations in both alleles of a dermal neurofibroma. Nat. Genet. 14, 110–112 (1996). (PMID: 878283110.1038/ng0996-110)
Serra, E. et al. Confirmation of a double-hit model for the NF1 gene in benign neurofibromas. Am. J. Hum. Genet. 61, 512–519 (1997). (PMID: 9326316171595810.1086/515504)
Khosla, M., Spiegelman, G. B., Insall, R. & Weeks, G. Functional overlap of the dictyostelium RasG, RasD and RasB proteins. J. Cell Sci. 113, 1427–1434 (2000). (PMID: 1072522510.1242/jcs.113.8.1427)
Srinivasan, K. et al. Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses. J. Cell Sci. 126, 221–233 (2013). (PMID: 23132928360351710.1242/jcs.113415)
Wilkins, A. et al. Dictyostelium RasD is required for normal phototaxis, but not differentiation. Genes Dev. 14, 1407–1413 (2000). (PMID: 1083703331665910.1101/gad.14.11.1407)
Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014). (PMID: 25323927435501710.1038/nrd4389)
Spencer-Smith, R. & O’Bryan, J. P. Direct inhibition of RAS: quest for the Holy Grail? Semin. Cancer Biol. 54, 138–148 (2019). (PMID: 2924853710.1016/j.semcancer.2017.12.005)
Spiegel, J., Cromm, P. M., Zimmermann, G., Grossmann, T. N. & Waldmann, H. Small-molecule modulation of Ras signaling. Nat. Chem. Biol. 10, 613–622 (2014). (PMID: 2492952710.1038/nchembio.1560)
Buckley, C. M. et al. Coordinated Ras and Rac activity shapes macropinocytic cups and enables phagocytosis of geometrically diverse bacteria. Curr. Biol. 30, 2912–2926 (2020). (PMID: 32531280741611510.1016/j.cub.2020.05.049)
Veltman, D. M. et al. A plasma membrane template for macropinocytic cups. eLife 5, e20085 (2016). (PMID: 27960076515476110.7554/eLife.20085)
Banerjee, T. et al. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat. Cell Biol. 24, 1499–1515 (2022). (PMID: 362029731002974810.1038/s41556-022-00997-7)
Banerjee, T., Matsuoka, S. & Biswas, D. et al. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat. Commun. 14, 7909 (2023). (PMID: 380365111068984510.1038/s41467-023-43615-2)
Miao, Y. et al. Wave patterns organize cellular protrusions and control cortical dynamics. Mol. Syst. Biol. 15, e8585 (2019). (PMID: 30858181641388510.15252/msb.20188585)
Bhattacharya, S. et al. Traveling and standing waves mediate pattern formation in cellular protrusions. Sci. Adv. 6, eaay7682 (2020). (PMID: 32821814741373210.1126/sciadv.aay7682)
Ecke, M. & Gerisch, G. Co-existence of Ras activation in a chemotactic signal transduction pathway and in an autonomous wave -forming system. Small GTPases 10, 72–80 (2019). (PMID: 2813601810.1080/21541248.2016.1268666)
Gerhardt, M. et al. Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. J. Cell Sci. 127, 4507–4517 (2014). (PMID: 25107368)
Lilly, P., Wu, L., Welker, D. L. & Devreotes, P. N. A G-protein β-subunit is essential for Dictyostelium development. Genes Dev. 7, 986–995 (1993). (PMID: 809933510.1101/gad.7.6.986)
Wu, L., Valkema, R., Van Haastert, P. J. & Devreotes, P. N. The G protein β subunit is essential for multiple responses to chemoattractants in Dictyostelium. J. Cell Biol. 129, 1667–1675 (1995). (PMID: 779036210.1083/jcb.129.6.1667)
Pan, M., Xu, X., Chen, Y. & Jin, T. Identification of a chemoattractant G-protein-coupled receptor for folic acid that controls both chemotaxis and phagocytosis. Dev. Cell 36, 428–439 (2016). (PMID: 26906738476832010.1016/j.devcel.2016.01.012)
Aufderheide, K. J. & Janetopoulos, C. Migration of Dictyostelium discoideum to the chemoattractant folic acid. Methods Mol. Biol. 1407, 25–39 (2016). (PMID: 2727189210.1007/978-1-4939-3480-5_3)
De Lozanne, A. & Spudich, J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091 (1987). (PMID: 357622210.1126/science.3576222)
Knecht, D. A. & Loomis, W. F. Developmental consequences of the lack of myosin heavy chain in Dictyostelium discoideum. Dev. Biol. 128, 178–184 (1988). (PMID: 338417310.1016/0012-1606(88)90280-1)
Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A. & Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279, 35557–35563 (2004). (PMID: 1520545610.1074/jbc.M405319200)
Houk, A. R. et al. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148, 175–188 (2012). (PMID: 22265410330872810.1016/j.cell.2011.10.050)
Narumiya, S., Ishizaki, T. & Uehata, M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325, 273–284 (2000). (PMID: 1103661010.1016/S0076-6879(00)25449-9)
O’Neill, P. R. et al. Membrane flow drives an adhesion-independent amoeboid cell migration mode. Dev. Cell 46, 9–22 e24 (2018). (PMID: 29937389604897210.1016/j.devcel.2018.05.029)
Azzi, J. et al. The novel therapeutic effect of phosphoinositide 3-kinase-γ inhibitor AS605240 in autoimmune diabetes. Diabetes 61, 1509–1518 (2012). (PMID: 22403300335727110.2337/db11-0134)
Hoang, B. et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116, 4560–4568 (2010). (PMID: 20686120299611610.1182/blood-2010-05-285726)
Zhan, H. et al. An excitable Ras/PI3K/ERK signaling network controls migration and oncogenic transformation in epithelial cells. Dev. Cell 54, 608–623 (2020). (PMID: 32877650750520610.1016/j.devcel.2020.08.001)
Shi, C., Huang, C. H., Devreotes, P. N. & Iglesias, P. A. Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells. PLoS Comput. Biol. 9, e1003122 (2013). (PMID: 23861660370169610.1371/journal.pcbi.1003122)
Shi, C. & Iglesias, P. A. Excitable behavior in amoeboid chemotaxis. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 631–642 (2013). (PMID: 23757165374581410.1002/wsbm.1230)
Cheng, Y. & Othmer, H. A model for direction sensing in Dictyostelium discoideum: Ras activity and symmetry breaking driven by a Gβγ-mediated, Gα2-Ric8-dependent signal transduction network. PLoS Comput. Biol. 12, e1004900 (2016). (PMID: 27152956485957310.1371/journal.pcbi.1004900)
Miao, Y. et al. Altering the threshold of an excitable signal transduction network changes cell migratory modes. Nat. Cell Biol. 19, 329–340 (2017). (PMID: 28346441539493110.1038/ncb3495)
Huang, C. H., Tang, M., Shi, C., Iglesias, P. A. & Devreotes, P. N. An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat. Cell Biol. 15, 1307–1316 (2013). (PMID: 24142103383889910.1038/ncb2859)
O’Neill, P. R. & Gautam, N. Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol. Biol. Cell 25, 2305–2314 (2014). (PMID: 24920824411630410.1091/mbc.e14-04-0870)
Mseka, T., Bamburg, J. R. & Cramer, L. P. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J. Cell Sci. 120, 4332–4344 (2007). (PMID: 1804262410.1242/jcs.017640)
Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999). (PMID: 988911910.1016/S0960-9822(99)80042-6)
Yam, P. T. et al. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178, 1207–1221 (2007). (PMID: 17893245206465410.1083/jcb.200706012)
Nguyen, D. H. et al. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J. Cell Biol. 146, 149–164 (1999). (PMID: 10402467219973910.1083/jcb.146.1.149)
Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996). (PMID: 860859010.1016/S0092-8674(00)81281-7)
Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639–1651 (2013). (PMID: 24332913394120610.1016/j.cell.2013.11.029)
Hatzikirou, H., Basanta, D., Simon, M., Schaller, K. & Deutsch, A. Go or grow’: the key to the emergence of invasion in tumour progression? Math. Med. Biol. 29, 49–65 (2012). (PMID: 2061046910.1093/imammb/dqq011)
Matus, D. Q. et al. Invasive cell fate requires G1 cell-cycle arrest and histone deacetylase-mediated changes in gene expression. Dev. Cell 35, 162–174 (2015). (PMID: 26506306473252910.1016/j.devcel.2015.10.002)
Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015). (PMID: 2553539210.1073/pnas.1417910112)
Dickinson, D. J., Robinson, D. N., Nelson, W. J. & Weis, W. I. α-Catenin and IQGAP regulate myosin localization to control epithelial tube morphogenesis in Dictyostelium. Dev. Cell 23, 533–546 (2012). (PMID: 22902739344328410.1016/j.devcel.2012.06.008)
Schneider, N. et al. A Lim protein involved in the progression of cytokinesis and regulation of the mitotic spindle. Cell Motil. Cytoskeleton 56, 130–139 (2003). (PMID: 1450671010.1002/cm.10139)
Yang, H. W., Collins, S. R. & Meyer, T. Locally excitable Cdc42 signals steer cells during chemotaxis. Nat. Cell Biol. 18, 191–201 (2016). (PMID: 2668967710.1038/ncb3292)
Yusa, K., Rad, R., Takeda, J. & Bradley, A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods 6, 363–369 (2009). (PMID: 19337237267716510.1038/nmeth.1323)
Manstein, D. J., Titus, M. A., De Lozanne, A. & Spudich, J. A. Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J. 8, 923–932 (1989). (PMID: 272150340089210.1002/j.1460-2075.1989.tb03453.x)
Li, X., Pal, D. S., Biswas, D., Iglesias, P. A. & Devreotes, P. N. Reverse fountain flow of phosphatidylinositol-3,4-bisphosphate polarizes migrating cells. EMBO J. 40, e105094 (2021). (PMID: 33586225788329810.15252/embj.2020105094)
Millius, A. & Weiner, O. D. Manipulation of neutrophil-like HL-60 cells for the study of directed cell migration. Methods Mol. Biol. 591, 147–158 (2010). (PMID: 19957129312879810.1007/978-1-60761-404-3_9)
Rincon, E., Rocha-Gregg, B. L. & Collins, S. R. A map of gene expression in neutrophil-like cell lines. BMC Genomics 19, 573 (2018). (PMID: 30068296609085010.1186/s12864-018-4957-6)
Mishra, A. K. et al. Hyperactive Rac stimulates cannibalism of living target cells and enhances CAR-M-mediated cancer cell killing. Proc. Natl Acad. Sci. USA 120, e2310221120 (2023). (PMID: 381095511075630210.1073/pnas.2310221120)
Rovera, G., Santoli, D. & Damsky, C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc. Natl Acad. Sci. USA 76, 2779–2783 (1979). (PMID: 28806638369210.1073/pnas.76.6.2779)
Pal, D. S. et al. Optogenetic modulation of guanine nucleotide exchange factors of Ras superfamily proteins directly controls cell shape and movement. Front. Cell Dev. Biol. 11, 1195806 (2023). (PMID: 374922211036361210.3389/fcell.2023.1195806)
Jiao, Z. et al. Statin-induced GGPP depletion blocks macropinocytosis and starves cells with oncogenic defects. Proc. Natl Acad. Sci. USA 117, 4158–4168 (2020). (PMID: 32051246704914410.1073/pnas.1917938117)
Kuhn, J., Lin, Y. & Devreotes, P. N. Using live-cell imaging and synthetic biology to probe directed migration in Dictyostelium. Front. Cell Dev. Biol. 9, 740205 (2021). (PMID: 34676215852383810.3389/fcell.2021.740205)
Peng, G. E., Wilson, S. R. & Weiner, O. D. A pharmacological cocktail for arresting actin dynamics in living cells. Mol. Biol. Cell 22, 3986–3994 (2011). (PMID: 21880897320406110.1091/mbc.e11-04-0379)
Wang, M. J., Artemenko, Y., Cai, W. J., Iglesias, P. A. & Devreotes, P. N. The directional response of chemotactic cells depends on a balance between cytoskeletal architecture and the external gradient. Cell Rep. 9, 1110–1121 (2014). (PMID: 25437564425082610.1016/j.celrep.2014.09.047)
Zhan, H. et al. Self-organizing glycolytic waves fuel cell migration and cancer progression. Preprint at bioRxiv https://doi.org/10.1101/2024.01.28.577603 (2024).
Kamimura, Y., Tang, M. & Devreotes, P. Assays for chemotaxis and chemoattractant-stimulated TorC2 activation and PKB substrate phosphorylation in Dictyostelium. Methods Mol. Biol. 571, 255–270 (2009). (PMID: 19763972437219910.1007/978-1-60761-198-1_17)
Klein, P., Theibert, A., Fontana, D. & Devreotes, P. N. Identification and cyclic AMP-induced modification of the cyclic AMP receptor in Dictyostelium discoideum. J. Biol. Chem. 260, 1757–1764 (1985). (PMID: 298187210.1016/S0021-9258(18)89658-2)
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). (PMID: 22930834555454210.1038/nmeth.2089)
Zatulovskiy, E., Tyson, R., Bretschneider, T. & Kay, R. R. Bleb-driven chemotaxis of Dictyostelium cells. J. Cell Biol. 204, 1027–1044 (2014). (PMID: 24616222399880410.1083/jcb.201306147)
Gillespie, D. T. The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000). (PMID: 10.1063/1.481811)
Biswas, D., Bhattacharya, S. & Iglesias, P. A. Enhanced chemotaxis through spatially regulated absolute concentration robustness. Int. J. Robust. Nonlin. 33, 4923–4944 (2023). (PMID: 10.1002/rnc.6049)
Yang, L. et al. Modeling cellular deformations using the level set formalism. BMC Syst. Biol. 2, 68 (2008). (PMID: 18652669253559410.1186/1752-0509-2-68)
Iglesias, P. A. piglesi1/GAP-role-in-polarization: v1.00. Zenodo https://doi.org/10.5281/zenodo.11121861 (2024).
معلومات مُعتمدة: AFOSR MURI FA95501610052 United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research); NIH grant S10OD016374 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS); S10 OD016374 United States OD NIH HHS; NIH grant R35 GM118177 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS); DARPA HR0011-16-C-0139 United States Department of Defense | Defense Advanced Research Projects Agency (DARPA); R35 GM118177 United States GM NIGMS NIH HHS
المشرفين على المادة: 9013-26-7 (Actomyosin)
EC 3.6.5.2 (ras Proteins)
EC 3.6.1.- (Myosin Type II)
0 (ras GTPase-Activating Proteins)
0 (Protozoan Proteins)
0 (Actins)
تواريخ الأحداث: Date Created: 20240701 Date Completed: 20240716 Latest Revision: 20240730
رمز التحديث: 20240730
DOI: 10.1038/s41556-024-01453-4
PMID: 38951708
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4679
DOI:10.1038/s41556-024-01453-4