دورية أكاديمية

Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis.

التفاصيل البيبلوغرافية
العنوان: Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis.
المؤلفون: Shoda C; Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.; Ophthalmology, Keio University School of Medicine, Tokyo, Japan.; Ophthalmology, Nihon University School of Medicine, Tokyo, Japan., Lee D; Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.; Ophthalmology, Keio University School of Medicine, Tokyo, Japan., Miwa Y; Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.; Ophthalmology, Keio University School of Medicine, Tokyo, Japan.; Aichi Animal Eye Clinic, Nagoya, Aichi, Japan., Yamagami S; Ophthalmology, Nihon University School of Medicine, Tokyo, Japan., Nakashizuka H; Ophthalmology, Nihon University School of Medicine, Tokyo, Japan., Nimura K; Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan., Okamoto K; Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan.; Marine Open Innovation Institute, Shizuoka, Japan., Kawagishi H; Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.; Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan., Negishi K; Ophthalmology, Keio University School of Medicine, Tokyo, Japan., Kurihara T; Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.; Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2024 Jul 15; Vol. 38 (13), pp. e23792.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: Fibrosis*/metabolism , Retinal Pigment Epithelium*/metabolism , Retinal Pigment Epithelium*/pathology , Von Hippel-Lindau Tumor Suppressor Protein*/metabolism , Von Hippel-Lindau Tumor Suppressor Protein*/genetics , Mice, Knockout*, Animals ; Mice ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics ; Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors ; Macular Degeneration/metabolism ; Macular Degeneration/pathology ; Macular Degeneration/drug therapy ; Retina/metabolism ; Retina/pathology ; Epithelial-Mesenchymal Transition/drug effects ; Mice, Inbred C57BL
مستخلص: Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.
(© 2024 The Author(s). The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.)
References: Mitchell P, Liew G, Gopinath B, Wong TY. Age‐related macular degeneration. Lancet (London, England). 2018;392(10153):1147‐1159. doi:10.1016/s0140-6736(18)31550-2.
Grossniklaus HE, Green WR. Choroidal neovascularization. Am J Ophthalmol. 2004;137(3):496‐503. doi:10.1016/j.ajo.2003.09.042.
Fleckenstein M, Mitchell P, Freund KB, et al. The progression of geographic atrophy secondary to age‐related macular degeneration. Ophthalmology. 2018;125(3):369‐390. doi:10.1016/j.ophtha.2017.08.038.
Cheong KX, Cheung CMG, Teo KYC. Review of fibrosis in neovascular age‐related macular degeneration. Am J Ophthalmol. 2023;246:192‐222. doi:10.1016/j.ajo.2022.09.008.
Ishikawa K, Sreekumar PG, Spee C, et al. αB‐crystallin regulates subretinal fibrosis by modulation of epithelial‐mesenchymal transition. Am J Pathol. 2016;186(4):859‐873. doi:10.1016/j.ajpath.2015.11.014.
Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age‐related macular degeneration. Exp Eye Res. 2016;142:19‐25. doi:10.1016/j.exer.2015.03.009.
Zhou M, Geathers JS, Grillo SL, et al. Role of epithelial‐mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol. 2020;8:501. doi:10.3389/fcell.2020.00501.
Caceres PS, Rodriguez‐Boulan E. Retinal pigment epithelium polarity in health and blinding diseases. Curr Opin Cell Biol. 2020;62:37‐45. doi:10.1016/j.ceb.2019.08.001.
Semenza GL. HIF‐1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167‐171. doi:10.1016/s0955-0674(00)00194-0.
Walmsley SR, McGovern NN, Whyte MK, Chilvers ER. The HIF/VHL pathway: from oxygen sensing to innate immunity. Am J Respir Cell Mol Biol. 2008;38(3):251‐255. doi:10.1165/rcmb.2007-0331TR.
Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol. 2014;9(2):142‐160. doi:10.1007/s11481-014-9531-7.
Lee D, Miwa Y, Kunimi H, et al. HIF inhibition therapy in ocular diseases. Keio J Med. 2022;71(1):1‐12. doi:10.2302/kjm.2021-0004-IR.
Kurihara T. Roles of hypoxia response in retinal development and pathophysiology. Keio J Med. 2018;67(1):1‐9. doi:10.2302/kjm.2017-0002-IR.
Kurihara T, Westenskow PD, Friedlander M. Hypoxia‐inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv Exp Med Biol. 2014;801:275‐281. doi:10.1007/978-1-4614-3209-8_35.
Zou L, Wang X, Han X. LncRNA MALAT 1/miR‐625‐3p/HIF‐1α axis regulates the EMT of hypoxia‐induced RPE cells by activating NF‐κB/snail signaling. Exp Cell Res. 2023;429(1):113650. doi:10.1016/j.yexcr.2023.113650.
Farjood F, Ahmadpour A, Ostvar S, Vargis E. Acute mechanical stress in primary porcine RPE cells induces angiogenic factor expression and in vitro angiogenesis. J Biol Eng. 2020;14:13. doi:10.1186/s13036-020-00235-4.
Lai K, Luo C, Zhang X, et al. Regulation of angiogenin expression and epithelial‐mesenchymal transition by HIF‐1α signaling in hypoxic retinal pigment epithelial cells. Biochim Biophys Acta. 2016;1862(9):1594‐1607. doi:10.1016/j.bbadis.2016.05.023.
Shoda C, Miwa Y, Nimura K, et al. Hypoxia‐inducible factor inhibitors derived from marine products suppress a murine model of neovascular retinopathy. Nutrients. 2020;12(4):1055. doi:10.3390/nu12041055.
Iacovelli J, Zhao C, Wolkow N, et al. Generation of Cre transgenic mice with postnatal RPE‐specific ocular expression. Invest Ophthalmol Vis Sci. 2011;52(3):1378‐1383. doi:10.1167/iovs.10-6347.
Ryan HE, Lo J, Johnson RS. HIF‐1 alpha is required for solid tumor formation and embryonic vascularization. The EMBO J. 1998;17(11):3005‐3015. doi:10.1093/emboj/17.11.3005.
Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal ablation of Hif‐2alpha results in anemia. Proc Natl Acad Sci USA. 2007;104(7):2301‐2306. doi:10.1073/pnas.0608382104.
Haase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers with targeted inactivation of the von Hippel‐Lindau tumor suppressor. Proc Natl Acad Sci USA. 2001;98(4):1583‐1588. doi:10.1073/pnas.98.4.1583.
Kunimi H, Miwa Y, Inoue H, Tsubota K, Kurihara T. A novel HIF inhibitor Halofuginone prevents neurodegeneration in a murine model of retinal ischemia‐reperfusion. Int J Mol Sci. 2019;20(13):3171. doi:10.3390/ijms20133171.
Nakashizuka H, Mitsumata M, Okisaka S, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008;49(11):4729‐4737. doi:10.1167/iovs.08-2134.
Lambert HM, Capone A Jr, Aaberg TM, Sternberg P Jr, Mandell BA, Lopez PF. Surgical excision of subfoveal neovascular membranes in age‐related macular degeneration. Am J Ophthalmol. 1992;113(3):257‐262. doi:10.1016/s0002-9394(14)71576-4.
Lee D, Nakai A, Miwa Y, Negishi K, Tomita Y, Kurihara T. Pemafibrate prevents choroidal neovascularization in a mouse model of neovascular age‐related macular degeneration. PeerJ. 2023;11:e14611. doi:10.7717/peerj.14611.
Ibuki M, Lee D, Shinojima A, Miwa Y, Tsubota K, Kurihara T. Rice bran and vitamin B6 suppress pathological neovascularization in a murine model of age‐related macular degeneration as novel HIF inhibitors. Int J Mol Sci. 2020;21(23):8940. doi:10.3390/ijms21238940.
Lee D, Miwa Y, Wu J, et al. A fairy chemical suppresses retinal angiogenesis as a HIF inhibitor. Biomolecules. 2020;10(10):1405. doi:10.3390/biom10101405.
Lee D, Tomita Y, Jeong H, et al. Pemafibrate prevents retinal dysfunction in a mouse model of unilateral common carotid artery occlusion. Int J Mol Sci. 2021;22(17):9408. doi:10.3390/ijms22179408.
Kuroha S, Katada Y, Isobe Y, et al. Long chain acyl‐CoA synthetase 6 facilitates the local distribution of di‐docosahexaenoic acid‐ and ultra‐long‐chain‐PUFA‐containing phospholipids in the retina to support normal visual function in mice. FASEB J. 2023;37(9):e23151. doi:10.1096/fj.202300976R.
Hao XN, Wang WJ, Chen J, et al. Effects of resveratrol on ARPE‐19 cell proliferation and migration via regulating the expression of proliferating cell nuclear antigen, P21, P27 and p38MAPK/MMP‐9. Int J Ophthalmol. 2016;9(12):1725‐1731. doi:10.18240/ijo.2016.12.04.
Yang J, Li J, Wang Q, Xing Y, Tan Z, Kang Q. Novel NADPH oxidase inhibitor VAS2870 suppresses TGF‐β‐dependent epithelial‐to‐mesenchymal transition in retinal pigment epithelial cells. Int J Mol Med. 2018;42(1):123‐130. doi:10.3892/ijmm.2018.3612.
Ma X, Pan L, Jin X, et al. Microphthalmia‐associated transcription factor acts through PEDF to regulate RPE cell migration. Exp Cell Res. 2012;318(3):251‐261. doi:10.1016/j.yexcr.2011.11.002.
Chien HW, Wang K, Chang YY, et al. Kaempferol suppresses cell migration through the activation of the ERK signaling pathways in ARPE‐19 cells. Environ Toxicol. 2019;34(3):312‐318. doi:10.1002/tox.22686.
Li F, Lei C, Gong K, Bai S, Sun L. Palmitic acid promotes human retinal pigment epithelial cells migration by upregulating miR‐222 expression and inhibiting NUMB. Aging. 2023;15(18):9341‐9357. doi:10.18632/aging.204647.
Li M, Li H, Yang S, Liao X, Zhao C, Wang F. L‐carnitine attenuates TGF‐β1‐induced EMT in retinal pigment epithelial cells via a PPARγ‐dependent mechanism. Int J Mol Med. 2021;47(6):110. doi:10.3892/ijmm.2021.4943.
Liu Z, Mao X, Yang Q, et al. Suppression of myeloid PFKFB3‐driven glycolysis protects mice from choroidal neovascularization. Br J Pharmacol. 2022;179(22):5109‐5131. doi:10.1111/bph.15925.
Xie L, Wang Y, Li Q, et al. The HIF‐1α/p53/miRNA‐34a/klotho axis in retinal pigment epithelial cells promotes subretinal fibrosis and exacerbates choroidal neovascularization. J Cell Mol Med. 2021;25(3):1700‐1711. doi:10.1111/jcmm.16272.
Zou R, Feng YF, Xu YH, Shen MQ, Zhang X, Yuan YZ. Yes‐associated protein promotes endothelial‐to‐mesenchymal transition of endothelial cells in choroidal neovascularization fibrosis. Int J Ophthalmol. 2022;15(5):701‐710. doi:10.18240/ijo.2022.05.03.
Cui K, Liu J, Huang L, et al. Andrographolide attenuates choroidal neovascularization by inhibiting the HIF‐1α/VEGF signaling pathway. Biochem Biophys Res Commun. 2020;530(1):60‐66. doi:10.1016/j.bbrc.2020.06.130.
Ibuki M, Shoda C, Miwa Y, Ishida A, Tsubota K, Kurihara T. Lactoferrin has a therapeutic effect via HIF inhibition in a murine model of choroidal neovascularization. Front Pharmacol. 2020;11:174. doi:10.3389/fphar.2020.00174.
Little K, Llorián‐Salvador M, Tang M, et al. A two‐stage laser‐induced mouse model of subretinal fibrosis secondary to choroidal neovascularization. Transl Vis Sci Technol. 2020;9(4):3. doi:10.1167/tvst.9.4.3.
Zandi S, Li Y, Jahnke L, et al. Animal model of subretinal fibrosis without active choroidal neovascularization. Exp Eye Res. 2023;229:109428. doi:10.1016/j.exer.2023.109428.
Liu Y, Noda K, Murata M, Wu D, Kanda A, Ishida S. Blockade of platelet‐derived growth factor signaling inhibits choroidal neovascularization and subretinal fibrosis in mice. J Clin Med. 2020;9(7):2242. doi:10.3390/jcm9072242.
Lai K, Li Y, Li L, et al. Intravitreal injection of triptolide attenuates subretinal fibrosis in laser‐induced murine model. Phytomedicine. 2021;93:153747. doi:10.1016/j.phymed.2021.153747.
Kurihara T, Kubota Y, Ozawa Y, et al. von Hippel‐Lindau protein regulates transition from the fetal to the adult circulatory system in retina. Development. 2010;137(9):1563‐1571. doi:10.1242/dev.049015.
Ibuki M, Shoda C, Miwa Y, Ishida A, Tsubota K, Kurihara T. Therapeutic effect of garcinia cambogia extract and Hydroxycitric acid inhibiting hypoxia‐inducible factor in a murine model of age‐related macular degeneration. Int J Mol Sci. 2019;20(20):5049. doi:10.3390/ijms2020.
Di Gregorio J, Robuffo I, Spalletta S, et al. The epithelial‐to‐mesenchymal transition as a possible therapeutic target in fibrotic disorders. Front Cell Dev Biol. 2020;8:607483. doi:10.3389/fcell.2020.607483.
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial‐mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178‐196. doi:10.1038/nrm3758.
Szczepan M, Llorián‐Salvador M, Chen M, Xu H. Immune cells in subretinal wound healing and fibrosis. Front Cell Neurosci. 2022;16:916719. doi:10.3389/fncel.2022.916719.
Zhang J, Qin Y, Martinez M, et al. HIF‐1α and HIF‐2α redundantly promote retinal neovascularization in patients with ischemic retinal disease. J Clin Invest. 2021;131(12):e139202. doi:10.1172/jci139202.
Zeng M, Shen J, Liu Y, et al. The HIF‐1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. J Mol Med (Berl). 2017;95(4):417‐429. doi:10.1007/s00109-016-1498-9.
Hackett SF, Fu J, Kim YC, et al. Sustained delivery of acriflavine from the suprachoroidal space provides long term suppression of choroidal neovascularization. Biomaterials. 2020;243:119935. doi:10.1016/j.biomaterials.2020.119935.
Yoshida T, Zhang H, Iwase T, Shen J, Semenza GL, Campochiaro PA. Digoxin inhibits retinal ischemia‐induced HIF‐1alpha expression and ocular neovascularization. FASEB J. 2010;24(6):1759‐1767. doi:10.1096/fj.09-145664.
Zhang J, Sharma D, Dinabandhu A, et al. Targeting hypoxia‐inducible factors with 32‐134D safely and effectively treats diabetic eye disease in mice. J Clin Invest. 2023;133(13):e163290. doi:10.1172/jci163290.
Guo C, Deshpande M, Niu Y, et al. HIF‐1α accumulation in response to transient hypoglycemia may worsen diabetic eye disease. Cell Rep. 2023;42(1):111976. doi:10.1016/j.celrep.2022.111976.
Kurihara T, Westenskow PD, Gantner ML, et al. Hypoxia‐induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. elife. 2016;5:e14319. doi:10.7554/eLife.14319.
Zhang J, Zhang Q. VHL and hypoxia signaling: beyond HIF in cancer. Biomedicine. 2018;6(1):35. doi:10.3390/biomedicines6010035.
Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH. Up‐regulation of hypoxia‐inducible factors HIF‐1alpha and HIF‐2alpha under normoxic conditions in renal carcinoma cells by von Hippel‐Lindau tumor suppressor gene loss of function. Oncogene. 2000;19(48):5435‐5443. doi:10.1038/sj.onc.1203938.
Shu DY, Butcher E, Saint‐Geniez M. EMT and EndMT: emerging roles in age‐related macular degeneration. Int J Mol Sci. 2020;21(12):4271. doi:10.3390/ijms21124271.
Tretbar S, Krausbeck P, Müller A, et al. TGF‐β inducible epithelial‐to‐mesenchymal transition in renal cell carcinoma. Oncotarget. 2019;10(15):1507‐1524. doi:10.18632/oncotarget.26682.
Jennings MT, Pietenpol JA. The role of transforming growth factor beta in glioma progression. J Neuro‐Oncol. 1998;36(2):123‐140. doi:10.1023/a:1005863419880.
Zhang J, Tian XJ, Zhang H, et al. TGF‐β‐induced epithelial‐to‐mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal. 2014;7(345):ra91. doi:10.1126/scisignal.2005304.
Tosi GM, Orlandini M, Galvagni F. The controversial role of TGF‐β in neovascular age‐related macular degeneration pathogenesis. Int J Mol Sci. 2018;19(11):3363. doi:10.3390/ijms19113363.
Zhang H, Liu ZL. Transforming growth factor‐β neutralizing antibodies inhibit subretinal fibrosis in a mouse model. Int J Ophthalmol. 2012;5(3):307‐311. doi:10.3980/j.issn.2222-3959.2012.03.11.
Wang K, Li H, Sun R, et al. Emerging roles of transforming growth factor β signaling in wet age‐related macular degeneration. Acta Biochim Biophys Sin. 2019;51(1):1‐8. doi:10.1093/abbs/gmy145.
Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC. TGF‐β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer. 2012;12:26. doi:10.1186/1471-2407-12-26.
Fuxe J, Karlsson MC. TGF‐β‐induced epithelial‐mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol. 2012;22(5–6):455‐461. doi:10.1016/j.semcancer.2012.05.004.
Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM. Transforming growth factor‐β1 induces matrix metalloproteinase‐9 and cell migration in astrocytes: roles of ROS‐dependent ERK‐ and JNK‐NF‐κB pathways. J Neuroinflammation. 2010;7:88. doi:10.1186/1742-2094-7-88.
Hachana S, Larrivée B. TGF‐β superfamily signaling in the eye: implications for ocular pathologies. Cells. 2022;11(15):2336. doi:10.3390/cells11152336.
Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009;66(5):773‐787. doi:10.1007/s00018-008-8465-8.
Zhang W, Shi X, Peng Y, et al. HIF‐1α promotes epithelial‐mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One. 2015;10(6):e0129603. doi:10.1371/journal.pone.0129603.
Yoo YG, Christensen J, Huang LE. HIF‐1α confers aggressive malignant traits on human tumor cells independent of its canonical transcriptional function. Cancer Res. 2011;71(4):1244‐1252. doi:10.1158/0008-5472.Can-10-2360.
Cheng L, Zhou MY, Gu YJ, Chen L, Wang Y. ZEB1: new advances in fibrosis and cancer. Mol Cell Biochem. 2021;476(4):1643‐1650. doi:10.1007/s11010-020-04036-7.
Scott CL, Omilusik KD. ZEBs: novel players in immune cell development and function. Trends Immunol. 2019;40(5):431‐446. doi:10.1016/j.it.2019.03.001.
de Haan W, Dheedene W, Apelt K, et al. Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis. Cardiovasc Res. 2022;118(5):1262‐1275. doi:10.1093/cvr/cvab148.
Larsen R, Eilertsen K‐E, Mæhre H, Jensen I‐J, Elvevoll EO. Taurine content in marine foods: beneficial health effects. In: Hernández‐Ledesma B, Herrero M, eds. Bioactive Compounds from Marine Foods. Wiley‐Blackwell; 2013:249‐268.
Jangra A, Gola P, Singh J, et al. Emergence of taurine as a therapeutic agent for neurological disorders. Neural Regen Res. 2024;19(1):62‐68. doi:10.4103/1673-5374.374139.
Castelli V, Paladini A, d'Angelo M, et al. Taurine and oxidative stress in retinal health and disease. CNS Neurosci Ther. 2021;27(4):403‐412. doi:10.1111/cns.13610.
Jong CJ, Sandal P, Schaffer SW. The role of taurine in mitochondria health: more than just an antioxidant. Molecules (Basel, Switzerland). 2021;26(16):4913. doi:10.3390/molecules2616.
Duan H, Song W, Guo J, Yan W. Taurine: a source and application for the relief of visual fatigue. Nutrients. 2023;15(8):1843. doi:10.3390/nu15081843.
Militante J, Lombardini JB. Age‐related retinal degeneration in animal models of aging: possible involvement of taurine deficiency and oxidative stress. Neurochem Res. 2004;29(1):151‐160. doi:10.1023/b:nere.0000010444.97959.1b.
Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Ismail NM. Taurine protects against retinal and optic nerve damage induced by endothelin‐1 in rats via antioxidant effects. Neural Regen Res. 2018;13(11):2014‐2021. doi:10.4103/1673-5374.239450.
Singh P, Gollapalli K, Mangiola S, et al. Taurine deficiency as a driver of aging. Science (New York, NY). 2023;380(6649):eabn9257. doi:10.1126/science.abn9257.
Xu M, Fan R, Fan X, Shao Y, Li X. Progress and challenges of anti‐VEGF agents and their sustained‐release strategies for retinal angiogenesis. Drug Des Devel Ther. 2022;16:3241‐3262. doi:10.2147/dddt.S383101.
Wallsh JO, Gallemore RP. Anti‐VEGF‐resistant retinal diseases: a review of the latest treatment options. Cells. 2021;10(5):1049. doi:10.3390/cells10051049.
Rattner A, Williams J, Nathans J. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest. 2019;129(9):3807‐3820. doi:10.1172/jci126655.
Vadlapatla RK, Vadlapudi AD, Mitra AK. Hypoxia‐inducible factor‐1 (HIF‐1): a potential target for intervention in ocular neovascular diseases. Curr Drug Targets. 2013;14(8):919‐935. doi:10.2174/13894501113149990015.
معلومات مُعتمدة: 18K09424 KAKENHI; 24K12770 KAKENHI; Development of Research Seeds Based on Marine Biotechnology from Shizuoka Prefecture; JPMJSP2123 JST SPRING; JP22gm1510007 AMED
فهرسة مساهمة: Keywords: age‐related macular degeneration; choroidal neovascularization; hypoxia‐inducible factors; macular neovascularization; retinal pigment epithelium; subretinal fibrosis
المشرفين على المادة: EC 2.3.2.27 (Von Hippel-Lindau Tumor Suppressor Protein)
0 (Hypoxia-Inducible Factor 1, alpha Subunit)
0 (Basic Helix-Loop-Helix Transcription Factors)
0 (Hif1a protein, mouse)
EC 6.3.2.- (VHL protein, mouse)
1B37H0967P (endothelial PAS domain-containing protein 1)
تواريخ الأحداث: Date Created: 20240702 Date Completed: 20240702 Latest Revision: 20240702
رمز التحديث: 20240703
DOI: 10.1096/fj.202400540RRR
PMID: 38953555
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-6860
DOI:10.1096/fj.202400540RRR