دورية أكاديمية

Asymmetric catalytic synthesis of chiral covalent organic framework composite (S)-DTP-COF@SiO 2 for HPLC enantioseparations by normal-phase and reversed-phase chromatographic modes.

التفاصيل البيبلوغرافية
العنوان: Asymmetric catalytic synthesis of chiral covalent organic framework composite (S)-DTP-COF@SiO 2 for HPLC enantioseparations by normal-phase and reversed-phase chromatographic modes.
المؤلفون: Zhou HM; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China., Liu C; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China., Zhang Y; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China., Ma AX; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China., Luo ZH; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China., Zhu YL; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China., Ran XY; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China., Xie SM; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China. xieshengming_2006@163.com., Wang BJ; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China. wangbangjin711@163.com., Zhang JH; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China. zjh19861202@126.com., Yuan LM; Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
المصدر: Mikrochimica acta [Mikrochim Acta] 2024 Jul 03; Vol. 191 (8), pp. 445. Date of Electronic Publication: 2024 Jul 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Wien ; New York : Springer-Verlag.
مستخلص: A novel CCOF core-shell composite material (S)-DTP-COF@SiO 2 was prepared via asymmetric catalytic and in situ growth strategy. The prepared (S)-DTP-COF@SiO 2 was utilized as separation medium for HPLC enantioseparation using normal-phase and reversed-phase chromatographic modes, which displays excellent chiral separation performance for alcohols, esters, ketones, and epoxides, etc. Compared with chiral commercial chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some previously reported chiral CCOF@SiO 2 (CC-MP CCTF@SiO 2 and MDI-β-CD-modified COF@SiO 2 )-packed columns, there are 4, 3, 13, and 15 tested racemic compounds that could not be resolved on the Chiralpak AD-H column, Chiralcel OD-H column, CC-MP CCTF@SiO 2 column, and MDI-β-CD-modified COF@SiO 2 column, respectively, which indicates that the resolution effect of (S)-DTP-COF@SiO 2 -packed column can be complementary to the other ones. The effects of the analyte mass, column temperature, and mobile phase composition on the enantiomeric separation were investigated. The chiral column exhibits good reproducibility after multiple consecutive injections. The RSDs (n = 5) of the peak area and retention time were less than 1.5% for repetitive separation of 2-methoxy-2-phenylethanol and 1-phenyl-1-pentanol. The chiral core-shell composite (S)-DTP-COF@SiO 2 exhibited good enantiomeric separation performance, which not only demonstrates its potential as a novel CSP material in HPLC but also expands the range of applications for chiral COFs.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Vardhan H, Nafady A, Al-Enizi AM, Ma SQ (2019) Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale 11(45):21679–21708. https://doi.org/10.1039/c9nr07525a. (PMID: 10.1039/c9nr07525a31720658)
Peng YW, Wong WK, Hu ZG, Cheng YD, Yuan DQ, Khan SA, Zhao D (2016) Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs). Chem Mater 28(14):5095–5101. https://doi.org/10.1021/acs.chemmater.6b01954. (PMID: 10.1021/acs.chemmater.6b01954)
Rawat KS, Borgmans S, Braeckevelt T, Stevens CVV, Van Der Voort P, Van Speybroeck V (2022) How the layer alignment in two-dimensional nanoporous covalent organic frameworks impacts its electronic properties. ACS Appl Nano Mater 5(10):14377–14387. https://doi.org/10.1021/acsanm.2c02647. (PMID: 10.1021/acsanm.2c02647)
Niu XY, Lv WJ, Sun Y, Dai HX, Chen HL, Chen XG (2020) In situ fabrication of 3D COF-300 in a capillary for separation of aromatic compounds by open-tubular capillary electrochromatography. Microchim Acta 187(4):233. https://doi.org/10.1007/s00604-020-4196-9. (PMID: 10.1007/s00604-020-4196-9)
Liu JG, Zhang MY, Wang N, Wang CG, Ma LL (2020) Research progress of covalent organic framework materials in catalysis. Acta Chim Sinica 78(4):311–325. https://doi.org/10.6023/a19120426. (PMID: 10.6023/a19120426)
Onishi T, Ueda T, Yoshida K, Uosaki K, Ando H, Hamasaki R, Ohnishi A (2022) Characteristic and complementary chiral recognition ability of four recently developed immobilized chiral stationary phases based on amylose and cellulose phenyl carbamates and benzoates. Chirality 34(7):925–940. https://doi.org/10.1002/chir.23446. (PMID: 10.1002/chir.23446354131489321961)
Altaf A, Baig N, Sohail M, Sher M, Ul-Hamid A, Altaf M (2021) Covalent organic frameworks: advances in synthesis and applications. Mater Today Commun 28:102612. https://doi.org/10.1016/j.mtcomm.2021.102612. (PMID: 10.1016/j.mtcomm.2021.102612)
Liu TZ, Hu R, Liu Y, Zhang KL, Bai RY, Yang YH (2020) Amperometric immunosensor based on covalent organic frameworks and Pt/Ru/C nanoparticles for the quantification of C-reactive protein. Microchim Acta 187(6):04286. https://doi.org/10.1007/s00604-020-04286-8. (PMID: 10.1007/s00604-020-04286-8)
Zheng YC, Wan MJ, Zhou JQ, Dai XM, Yang HL, Xia ZN, Wang LJ (2022) One-pot method for the synthesis of β-cyclodextrin and covalent organic framework functionalized chiral stationary phase with mixed-mode retention mechanism. J Chromatogr A 1662:462731. https://doi.org/10.1016/j.chroma.2021.462731. (PMID: 10.1016/j.chroma.2021.46273134915189)
Geng KY, He T, Liu RY, Dalapati S, Tan KT, Li ZP, Tao SS, Gong YF, Jiang QH, Jiang DL (2020) Covalent organic frameworks: design, synthesis, and functions. Chem Rev 120(16):8814–8933. https://doi.org/10.1021/acs.chemrev.9b00550. (PMID: 10.1021/acs.chemrev.9b0055031967791)
Gu ZJ, Shan Z, Wang YL, Wang JJ, Liu TT, Li XM, Yu ZY, Su J, Zhang G (2024) Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis. Chin Chem Lett 35(2):108356. https://doi.org/10.1016/j.cclet.2023.108356. (PMID: 10.1016/j.cclet.2023.108356)
Tang B, Wang W, Hou HP, Liu YQ, Liu ZK, Geng LN, Sun LQ, Luo AQ (2022) A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. Chin Chem Lett 33(2):898–902. https://doi.org/10.1016/j.cclet.2021.06.089. (PMID: 10.1016/j.cclet.2021.06.089)
Wang ZF, Zhang SN, Chen Y, Zhang ZJ, Ma SQ (2020) Covalent organic frameworks for separation applications. Chem Soc Rev 49(3):708–735. https://doi.org/10.1039/c9cs00827f. (PMID: 10.1039/c9cs00827f31993598)
Zhang KQ, Kirlikovali KO, Varma RS, Jin Z, Jang HW, Farha OK, Shokouhimehr M (2020) Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications. ACS Appl Mater Interfaces 12(25):27821–27852. https://doi.org/10.1021/acsami.0c06267. (PMID: 10.1021/acsami.0c0626732469503)
Zhao L, Zheng L, Li XP, Wang H, Lv LP, Chen SQ, Sun WW, Wang Y (2021) Cobalt coordinated cyano covalent-organic framework for high-performance potassium-organic batteries. ACS Appl Mater Interfaces 13(41):48913–48922. https://doi.org/10.1021/acsami.1c15441. (PMID: 10.1021/acsami.1c1544134609129)
Han X, Yuan C, Hou B, Liu LJ, Li HY, Liu Y, Cui Y (2020) Chiral covalent organic frameworks: design, synthesis and property. Chem Soc Rev 49(17):6248–6272. https://doi.org/10.1039/d0cs00009d. (PMID: 10.1039/d0cs00009d32724943)
Zhou M, Long YD, Zhi YG, Xu XY (2018) Preparation and chromatographic evaluation of a chiral stationary phase based on carboxymethyl-β-cyclodextrin for high performance liquid chromatography. Chin Chem Lett 29(9):1399–1403. https://doi.org/10.1016/j.cclet.2017.10.039. (PMID: 10.1016/j.cclet.2017.10.039)
Han X, Zhang J, Huang JJ, Wu XW, Yuan DQ, Liu Y, Cui Y (2018) Chiral induction in covalent organic frameworks. Nat Commun 9:1294. https://doi.org/10.1038/s41467-018-03689-9. (PMID: 10.1038/s41467-018-03689-9296156065882852)
Mayer LC, Heitsch S, Trapp O (2022) Nonlinear effects in asymmetric catalysis by design: concept, synthesis, and applications. Acc Chem Res 55(23):3345–3361. https://doi.org/10.1021/acs.accounts.2c00557. (PMID: 10.1021/acs.accounts.2c0055736351215)
Huang YH, Hayashi T (2022) Chiral diene ligands in asymmetric catalysis. Chem Rev 122(18):218. https://doi.org/10.1021/acs.chemrev.2c00218. (PMID: 10.1021/acs.chemrev.2c00218)
Li F, Kan JL, Yao BJ, Dong YB (2022) Synthesis of chiral covalent organic frameworks via asymmetric organocatalysis for heterogeneous asymmetric catalysis. Angew Chem Int Ed 61(25):202115044. https://doi.org/10.1002/anie.202115044. (PMID: 10.1002/anie.202115044)
Zhang HH, Li TZ, Liu SJ, Shi F (2023) Catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements: an emerging field. Angew Chem Int Ed 63(3):202311053. https://doi.org/10.1002/anie.202311053. (PMID: 10.1002/anie.202311053)
Kang X, Stephens ER, Spector-Watts BM, Li ZP, Liu Y, Liu LJ, Cui Y (2022) Challenges and opportunities for chiral covalent organic frameworks. Chem Sci 13(34):9811–9832. https://doi.org/10.1039/d2sc02436e. (PMID: 10.1039/d2sc02436e361996389431510)
Yao YJ, Zhang R, Liu T, Yu HJ, Lu G (2019) Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework. Inorg Chem Commun 101:160–163. https://doi.org/10.1016/j.inoche.2019.01.040. (PMID: 10.1016/j.inoche.2019.01.040)
Zhu YL, Guo P, Yang YP, Ran XY, Liu C, Wang BJ, Zhang JH, Xie SM, Yuan LM (2023) Chiral covalent triazine framework CC-DMP CCTF@SiO 2 core-shell microspheres used for HPLC enantioseparation. New J Chem 47(11):5413–5419. https://doi.org/10.1039/d2nj06097c. (PMID: 10.1039/d2nj06097c)
Ran XY, Guo P, Liu C, Zhu YL, Wang BJ, Zhang JH, Xie SM, Yuan LM (2023) Chiral covalent-organic framework MDI-β-CD-modified COF@SiO 2 core-shell composite for HPLC enantioseparation. Molecules 28(2):662. https://doi.org/10.3390/molecules28020662. (PMID: 10.3390/molecules28020662366777199866547)
Guo P, Yuan BY, Yu YY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral covalent organic framework core-shell composite CTpBD@SiO 2 used as stationary phase for HPLC enantioseparation. Microchim Acta 188(9):292. https://doi.org/10.1007/s00604-021-04954-3. (PMID: 10.1007/s00604-021-04954-3)
Liu C, Guo P, Lu YR, Zhu YL, Ran XY, Wang BJ, Zhang JH, Xie SM, Yuan LM (2023) In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation. Microchim Acta 190(6):238. https://doi.org/10.1007/s00604-023-05806-y. (PMID: 10.1007/s00604-023-05806-y)
Wang JC, Kan X, Shang JY, Qiao H, Dong YB (2020) Catalytic asymmetric synthesis of chiral covalent organic frameworks from prochiral monomers for heterogeneous asymmetric catalysis. J Am Chem Soc 142(40):16915–16920. https://doi.org/10.1021/jacs.0c07461. (PMID: 10.1021/jacs.0c0746132941016)
Li K, Xiong LX, Wang Y, Zhang YP, Wang BJ, Xie SM, Zhang JH, Yuan LM (2022) Preparation and evaluation of a chiral porous organic cage based chiral stationary phase for enantioseparation in high performance liquid chromatography. J Chromatogr A 1679:463415. https://doi.org/10.1016/j.chroma.2022.463415. (PMID: 10.1016/j.chroma.2022.46341535977455)
Zhang YP, Xiong LX, Wang Y, Li K, Wang BJ, Xie SM, Zhang JH, Yuan LM (2022) Preparation of chiral stationary phase based on a [3+3] chiral polyimine macrocycle by thiol-ene click chemistry for enantioseparation in normal-phase and reversed-phase high performance liquid chromatography. J Chromatogr A 1676:463253. https://doi.org/10.1016/j.chroma.2022.463253. (PMID: 10.1016/j.chroma.2022.46325335732093)
Zheng YC, Wan MJ, Zhou JQ, Luo QR, Gao D, Fu QF, Zeng J, Zu FJ, Wang LJ (2021) Striped covalent organic frameworks modified stationary phase for mixed mode chromatography. J Chromatogr A 1649:462186. https://doi.org/10.1016/j.chroma.2021.462186. (PMID: 10.1016/j.chroma.2021.46218634034102)
Wang SM, Wang YF, Huang LP, Zheng LS, Nian H, Zheng YT, Yao H, Jiang W, Wang XP, Yang LP (2023) Chiral recognition of neutral guests by chiral naphthotubes with a bis-thiourea endo-functionalized cavity. Nat Commun 14(1):5645. https://doi.org/10.1038/s41467-023-41390-8.
Zhang YP, Li K, Xiong LX, Wang BJ, Xie SM, Zhang JH, Yuan LM (2022) “Click” preparation of a chiral macrocycle-based stationary phase for both normal-phase and reversed-phase high performance liquid chromatography enantioseparation. J Chromatogr A 1683:463551. https://doi.org/10.1016/j.chroma.2022.463551. (PMID: 10.1016/j.chroma.2022.46355136219968)
Wang Y, Chen JK, Xiong LX, Wang BJ, Xie SM, Zhang JH, Yuan LM (2022) Preparation of novel chiral stationary phases based on the chiral porous organic cage by thiol-ene click chemistry for enantioseparation in HPLC. Anal Chem 94(12):4961–4969. https://doi.org/10.1021/acs.analchem.1c03626. (PMID: 10.1021/acs.analchem.1c0362635306818)
معلومات مُعتمدة: 22364022 National Natural Science Foundation of China; 21964021 National Natural Science Foundation of China; 22064020 National Natural Science Foundation of China; 202201AT070029 Applied Basic Research Foundation of Yunnan Province; 202101AT070101 Applied Basic Research Foundation of Yunnan Province
فهرسة مساهمة: Keywords: Asymmetric catalytic synthesis; Chiral covalent organic frameworks; Enantioseparation; HPLC
تواريخ الأحداث: Date Created: 20240703 Latest Revision: 20240813
رمز التحديث: 20240813
DOI: 10.1007/s00604-024-06524-9
PMID: 38958767
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-5073
DOI:10.1007/s00604-024-06524-9