دورية أكاديمية

Phytochemical-mediated regulation of aflatoxigenic fungi contamination in a shifting climate and environment.

التفاصيل البيبلوغرافية
العنوان: Phytochemical-mediated regulation of aflatoxigenic fungi contamination in a shifting climate and environment.
المؤلفون: Zaman S; Department of Botany, University of Malakand, Chakdara, KPK, Pakistan. shahzaman@uom.edu.pk., Khan N; Department of Botany, University of Malakand, Chakdara, KPK, Pakistan., Zahoor M; Department of Biochemistry, University of Malakand, Chakdara, KPK, Pakistan., Ullah R; Departement of Pharmacognosy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia., Bari A; Departement of Pharmaceutical Chemistry, College of Pharmacy King Saud University, Riyadh, Saudi Arabia., Sohail; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
المصدر: Environmental geochemistry and health [Environ Geochem Health] 2024 Jul 03; Vol. 46 (8), pp. 272. Date of Electronic Publication: 2024 Jul 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
مواضيع طبية MeSH: Aflatoxins*/analysis , Phytochemicals*/pharmacology , Phytochemicals*/analysis, Pakistan ; Plants, Medicinal/chemistry ; Plants, Medicinal/microbiology ; Climate
مستخلص: Mycotoxin contamination poses a significant problem in developing countries, particularly in northern Pakistan's fluctuating climate. This study aimed to assess aflatoxin contamination in medicinal and condiment plants in Upper Dir (dry-temperate) and Upper Swat (moist-temperate) districts. Plant samples were collected and screened for mycotoxins (Aflatoxin-B1 and Aflatoxin-B-2). Results showed high levels of AFB-1 (11,505.42 ± 188.82) as compared to AFB-2 (846 ± 241.56). The maximum contamination of AFB-1 in Coriandrum sativum (1154.5 ± 13.43 ng to 3328 ± 9.9 ng) followed by F. vulgare (883 ± 9.89 ng to 2483 ± 8.4 ng), T. ammi (815 ± 11.31 ng to 2316 ± 7.1 ng), and C. longa (935.5 ± 2.12 ng to 2009 ± 4.2 ng) while the minimum was reported in C. cyminum (671 ± 9.91 ng to 1995 ± 5.7 ng). Antifungal tests indicated potential resistance in certain plant species (C. cyminum) while A. flavus as the most toxins contributing species due to high resistance below 80% (54.2 ± 0.55 to 79.5 ± 2.02). HPLC analysis revealed hydroxyl benzoic acid (5136 amu) as the dominant average phytochemical followed by phloroglucinol (4144.31 amu) with individual contribution of 8542.08 amu and 12,181.5 amu from C. cyaminum. The comparison of average phytochemicals revealed the maximum concentration in C. cyminum (2885.95) followed by C. longa (1892.73). The findings revealed a statistically significant and robust negative correlation (y = - 2.7239 ×  + 5141.9; r = - 0.8136; p < 0.05) between average mycotoxins and phytochemical concentrations. Temperature positively correlated with aflatoxin levels (p < 0.01), while humidity had a weaker correlation. Elevation showed a negative correlation (p < 0.05), while geographical factors (latitude and longitude) had mixed correlations (p < 0.05). Specific regions exhibited increasing aflatoxin trends due to climatic and geographic factors.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Abel Palacios, H., Stefanello, A., García Gavilánez, M. S., Castro Demera, D. A., Garcia, M. V., Vásquez Castillo, W. A., Almeida Marcano, M. A., Samaniego Maigua, I. R., & Copetti, M. V. (2022). Relationship between the fungal incidence, water activity, humidity, and aflatoxin content in maize samples from the highlands and coast of ecuador. Toxins, 14(3), 196. (PMID: 10.3390/toxins14030196)
Adegbeye, M. J., Reddy, P. R. K., Chilaka, C. A., Balogun, O. B., Elghandour, M. M., Rivas-Caceres, R. R., & Salem, A. Z. (2020). Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—A review. Toxicon, 177, 96–108. (PMID: 10.1016/j.toxicon.2020.01.007)
Adhikari, M., Isaac, E. L., Paterson, R. R. M., & Maslin, M. A. (2020). A review of potential impacts of climate change on coffee cultivation and mycotoxigenic fungi. Microorganisms, 8(10), 1625. (PMID: 10.3390/microorganisms8101625)
Agriopoulou, S., Stamatelopoulou, E., & Varzakas, T. (2020). Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods, 9(2), 137. (PMID: 10.3390/foods9020137)
Ahmad, N., Ali, S., Abbas, M., Fazal, H., Saqib, S., Ali, A., Ullah, Z., Zaman, S., Sawati, L., Zada, A., & Sohail. (2023). Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Scientific Reports, 13(1), 14972. (PMID: 10.1038/s41598-023-41502-w)
Ali, W., Hashmi, M. Z., Jamil, A., Rasheed, S., Akbar, S., & Iqbal, H. (2022). Mid-century change analysis of temperature and precipitation maxima in the Swat River Basin, Pakistan. Frontiers in Environmental Science, 10, 973759. (PMID: 10.3389/fenvs.2022.973759)
Ałtyn, I., & Twarużek, M. (2020). Mycotoxin contamination concerns of herbs and medicinal plants. Toxins, 12(3), 182. (PMID: 10.3390/toxins12030182)
Al-Wabli, R. I., Alsulami, M. A., Bukhari, S. I., Moubayed, N. M., Al-Mutairi, M. S., & Attia, M. I. (2021). Design, synthesis, and antimicrobial activity of certain new indole-1, 2, 4 triazole conjugates. Molecules, 26(8), 2292. (PMID: 10.3390/molecules26082292)
Anfossi, L., Giovannoli, C., & Baggiani, C. (2016). Mycotoxin detection. Current Opinion in Biotechnology, 37, 120–126. (PMID: 10.1016/j.copbio.2015.11.005)
Assefa, A. D., Keum, Y. S., & Saini, R. K. (2018). A comprehensive study of polyphenols contents and antioxidant potential of 39 widely used spices and food condiments. Journal of Food Measurement and Characterization, 12(3), 1548–1555. (PMID: 10.1007/s11694-018-9770-z)
Atanasova-Penichon, V., Barreau, C., & Richard-Forget, F. (2016). Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation. Frontiers in Microbiology, 7, 187515. https://doi.org/10.3389/fmicb.2016.00566.
Aziz, M. A., Adnan, M., Khan, A. H., Shahat, A. A., Al-Said, M. S., & Ullah, R. (2018). Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. Journal of Ethnobiology and Ethnomedicine, 14, 1–16.
Bacha, M. S., Muhammad, M., Kılıç, Z., & Nafees, M. (2021). The dynamics of public perceptions and climate change in Swat valley, Khyber Pakhtunkhwa, Pakistan. Sustainability, 13(8), 4464. (PMID: 10.3390/su13084464)
Bascompte, J., García, M. B., Ortega, R., Rezende, E. L., & Pironon, S. (2019). Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Science Advances, 5(5), eaav2539. (PMID: 10.1126/sciadv.aav2539)
Chaudhry, S., & Sidhu, G. P. S. (2021). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41, 1–31. (PMID: 10.1007/s00299-021-02759-5)
Chipley, J. R. (2020). Sodium benzoate and benzoic acid. In P. M. Davidson, T. M. Taylor, J. R. D. David, P. M. Davidson, T. M. Taylor, & J. R. D. David (Eds.), Antimicrobials in food (pp. 41–88). CRC Press. (PMID: 10.1201/9780429058196-3)
Chulze, S. N. (2010). Strategies to reduce mycotoxin levels in maize during storage: A review. Food Additives and Contaminants, 27(5), 651–657. (PMID: 10.1080/19440040903573032)
Cotty, P. J., & Jaime-Garcia, R. (2007). Influences of climate on aflatoxin producing fungi and aflatoxin contamination. International Journal of Food Microbiology, 119(1–2), 109–115. (PMID: 10.1016/j.ijfoodmicro.2007.07.060)
Das, S., Singh, V. K., Upadhyay, N., Singh, B. K., Prasad, J., Tiwari, S., & Dubey, N. K. (2021). Secondary metabolites of higher plants as green preservatives of herbal raw materials and their active principles during postharvest processing. In S. C. Mandal, R. Chakraborty, & S. Sen (Eds.), Evidence based validation of traditional medicines (pp. 261–277). Springer. (PMID: 10.1007/978-981-15-8127-4_13)
Dietz, T., Shwom, R. L., & Whitley, C. T. (2020). Climate change and society. Annual Review of Sociology, 46, 135–158. (PMID: 10.1146/annurev-soc-121919-054614)
El Sheikha, A. F. (2019). Molecular detection of mycotoxigenic fungi in foods: The case for using PCR-DGGE. Food Biotechnology, 33(1), 54–108. (PMID: 10.1080/08905436.2018.1547644)
Elabscience. (2018). Enzyme Immunoassay for the Quantitative Analysis of Aflatoxin B1 (8th ed.). Elabscience.
Fang, L., Zhao, B., Zhang, R., Wu, P., Zhao, D., Chen, J., Pan, X., Wang, J., Wu, X., Zhang, H., & Qi, X. (2022). Occurrence and exposure assessment of aflatoxins in Zhejiang province, China. Environmental Toxicology and Pharmacology, 92, 103847. (PMID: 10.1016/j.etap.2022.103847)
Frezza, C., Venditti, A., Marcucci, E., Parroni, A., Reverberi, M., Serafini, M., & Bianco, A. (2019). Phytochemical analysis of Linaria purpurea (L.) Mill. and inhibitory activity on the production of aflatoxin B1 (AFB1) in Aspergillus flavus Link. of one of its metabolites, antirrhinoside. Industrial Crops and Products, 139, 111554. (PMID: 10.1016/j.indcrop.2019.111554)
Girolami, F., Barbarossa, A., Badino, P., Ghadiri, S., Cavallini, D., Zaghini, A., & Nebbia, C. (2022). Effects of turmeric powder on aflatoxin M1 and aflatoxicol excretion in milk from dairy cows exposed to aflatoxin B1 at the EU maximum tolerable levels. Toxins, 14(7), 430. (PMID: 10.3390/toxins14070430)
Grace, D., Mahuku, G., Hoffmann, V., Atherstone, C., Upadhyaya, H. D., & Bandyopadhyay, R. (2015). International agricultural research to reduce food risks: Case studies on aflatoxins. Food Security, 7, 569–582. (PMID: 10.1007/s12571-015-0469-2)
Hansen, R. C., Keener, H. M., & ElSohly, H. N. (1993). Thin-layer drying of cultivated Taxus clippings. Transactions of the ASABE, 36(5), 1387–1391. (PMID: 10.13031/2013.28475)
Hassan, H. F., Koaik, L., Khoury, A. E., Atoui, A., El Obeid, T., & Karam, L. (2022). Dietary exposure and risk assessment of mycotoxins in thyme and thyme-based products marketed in Lebanon. Toxins, 14(5), 331. (PMID: 10.3390/toxins14050331)
Iha, M. H., & Trucksess, M. W. (2019). Management of mycotoxins in spices. Journal of AOAC International, 102(6), 1732–1739. (PMID: 10.5740/jaoacint.19-0117)
Iqbal, S. Z. (2011). Aflatoxin contamination in chilies from Punjab Pakistan with reference to climate change. International Journal of Agriculture and Biology, 13(2), 261–265.
Ismail, I. A., Qari, S. H., Shawer, R., Elshaer, M. M., Dessoky, E. S., Youssef, N. H., & Behiry, S. I. (2021). The application of pomegranate, sugar apple, and eggplant peel extracts suppresses Aspergillus flavus growth and aflatoxin B1 biosynthesis pathway. Horticulturae, 7(12), 558. (PMID: 10.3390/horticulturae7120558)
Jamil, M., Mirza, B., & Qayyum, M. (2012). Isolation of antibacterial compounds from Quercus dilatata L. through bioassay guided fractionation. Annals of Clinical Microbiology and Antimicrobials, 11(1), 1–11. (PMID: 10.1186/1476-0711-11-11)
Jiang, W., Du, Y., Ji, Y., Zhou, Y., Zhao, P., & Yu, D. G. (2022). Modernization of traditional Chinese condiments via electrospun polymeric nanocomposites. ES Food & Agroforestry, 8, 47–56.
Kluczkovski, A. M. (2019). Fungal and mycotoxin problems in the nut industry. Current Opinion in Food Science, 29, 56–63. (PMID: 10.1016/j.cofs.2019.07.009)
Kumar, P., Gupta, A., Mahato, D. K., Pandhi, S., Pandey, A. K., Kargwal, R., Mishra, S., Suhag, R., Sharma, N., Saurabh, V., & Paul, V. (2022). Aflatoxins in cereals and cereal-based products: Occurrence, toxicity, impact on human health, and their detoxification and management strategies. Toxins, 14(10), 687. (PMID: 10.3390/toxins14100687)
Liu, Y., Galani Yamdeu, J. H., Gong, Y. Y., & Orfila, C. (2020). A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1521–1560. (PMID: 10.1111/1541-4337.12562)
Matumba, L., Sulyok, M., Njoroge, S. M., Njumbe Ediage, E., Van Poucke, C., De Saeger, S., & Krska, R. (2015). Uncommon occurrence ratios of aflatoxin B 1, B 2, G 1, and G 2 in maize and groundnuts from Malawi. Mycotoxin Research, 31, 57–62. (PMID: 10.1007/s12550-014-0209-z)
Mehta, R. V., Wenndt, A. J., Girard, A. W., Taneja, S., Ranjan, S., Ramakrishnan, U., Martorell, R., Ryan, P. B., Rangiah, K., & Young, M. F. (2021). Risk of dietary and breastmilk exposure to mycotoxins among lactating women and infants 2–4 months in northern India. Maternal & Child Nutrition, 17(2), e13100. (PMID: 10.1111/mcn.13100)
Mei, J., Zhao, F., Xu, R., & Huang, Y. (2022). A review on the application of spectroscopy to the condiments detection: From safety to authenticity. Critical Reviews in Food Science and Nutrition, 62(23), 6374–6389. (PMID: 10.1080/10408398.2021.1901257)
Moretti, A., Pascale, M., & Logrieco, A. F. (2019). Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science & Technology, 84, 38–40. (PMID: 10.1016/j.tifs.2018.03.008)
Muga, F. C., Marenya, M. O., & Workneh, T. S. (2019). Effect of temperature, relative humidity and moisture on aflatoxin contamination of stored maize kernels. Bulgarian Journal of Agricultural Science, 25(2), 271–277.
Nji, Q. N., Babalola, O. O., Ekwomadu, T. I., Nleya, N., & Mwanza, M. (2022). Six main contributing factors to high levels of mycotoxin contamination in African foods. Toxins, 14(5), 318. (PMID: 10.3390/toxins14050318)
Perrone, G., Ferrara, M., Medina, A., Pascale, M., & Magan, N. (2020). Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms, 8(10), 1496. (PMID: 10.3390/microorganisms8101496)
Pócsi, I., Giacometti, F., Ambrus, Á., & Logrieco, A. F. (2020). Aspergillus-derived mycotoxins in the feed and food chain. Frontiers in Microbiology, 11, 606108. (PMID: 10.3389/fmicb.2020.606108)
Qin, M., Liang, J., Yang, D., Yang, X., Cao, P., Wang, X., Ma, N., & Zhang, L. (2021). Spatial analysis of dietary exposure of aflatoxins in peanuts and peanut oil in different areas of China. Food Research International, 140, 109899. (PMID: 10.1016/j.foodres.2020.109899)
Rao, K. S., Haran, R. H., & Rajpoot, V. S. (2022). Value addition: A novel strategy for quality enhancement of medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100415. (PMID: 10.1016/j.jarmap.2022.100415)
Rizzo, I., Vedoya, G., Maurutto, S., Haidukowski, M., & Varsavsky, E. (2004). Assessment of toxigenic fungi on Argentinean medicinal herbs. Microbiological Research, 159(2), 113–120. (PMID: 10.1016/j.micres.2004.01.013)
Saravolatz, L. D., Johnson, L. B., & Kauffman, C. A. (2003). Voriconazole: A new triazole antifungal agent. Clinical Infectious Diseases, 36(5), 630–637. (PMID: 10.1086/367933)
Schamann, A., Schmidt-Heydt, M., Geisen, R., Kulling, S. E., & Soukup, S. T. (2022). Formation of B-and M-group aflatoxins and precursors by Aspergillus flavus on maize and its implication for food safety. Mycotoxin Research, 38(2), 79–92. (PMID: 10.1007/s12550-022-00452-4)
Smith, M. C., Madec, S., Coton, E., & Hymery, N. (2016). Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8(4), 94. (PMID: 10.3390/toxins8040094)
Tomás-Barberán, F. A., & Clifford, M. N. (2000). Dietary hydroxybenzoic acid derivatives–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1024–1032. (PMID: 10.1002/(SICI)1097-0010(20000515)80:7<1024::AID-JSFA567>3.0.CO;2-S)
Udomkun, P., Wiredu, A. N., Nagle, M., Müller, J., Vanlauwe, B., & Bandyopadhyay, R. (2017). Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application: A review. Food Control, 76, 127–138. (PMID: 10.1016/j.foodcont.2017.01.008)
Umaya, S. R., Vijayalakshmi, Y. C., & Sejian, V. (2021). Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status. Toxicon, 200, 55–68. (PMID: 10.1016/j.toxicon.2021.06.017)
Valencia-Quintana, R., Milić, M., Jakšić, D., Šegvić Klarić, M., Tenorio-Arvide, M. G., Pérez-Flores, G. A., Bonassi, S., & Sánchez-Alarcón, J. (2020). Environment changes, aflatoxins, and health issues, a review. International Journal of Environmental Research and Public Health, 17(21), 7850. (PMID: 10.3390/ijerph17217850)
Vitasse, Y., Ursenbacher, S., Klein, G., Bohnenstengel, T., Chittaro, Y., Delestrade, A., Monnerat, C., Rebetez, M., Rixen, C., Strebel, N., & Schmidt, B. R. (2021). Phenological and elevational shifts of plants, animals and fungi under climate change in the E uropean A lps. Biological Reviews, 96(5), 1816–1835. (PMID: 10.1111/brv.12727)
Yang, J., He, X., & Zhao, D. (2013). Factors affecting phytochemical stability. In Handbook of plant food phytochemicals: Sources, stability and extraction (pp. 332–374).
Yenasew, A. (2019). Aflatoxin contamination level of different crops in Ethiopia. International Journal of Bioorganic Chemistry, 4, 42–46. (PMID: 10.11648/j.ijbc.20190401.16)
Yu, J. (2012). Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins, 4(11), 1024–1057. (PMID: 10.3390/toxins4111024)
Zaman, S., Ullah, B., Shah, S. W. A., Rahim, G., & Hazrat, A. (2020). Effects of drying strategies, altitude and habitat on determination of aflatoxin-B1 levels in eight Artemisia species. Bioscience Reseacrzh., 17(2), 881–887.
Zeb, A. (2015). A reversed phase HPLC-DAD method for the determination of phenolic compounds in plant leaves. Analytical Methods, 7(18), 7753–7757. (PMID: 10.1039/C5AY01402F)
Zubair, A., Zahoor, U. S., Sher, A. K., Hamid, U. S., Barkat, A. K., & Ali, E. (2011). Fatty acid profile and aflatoxin contamination of walnuts (Juglans regia). ARPN Journal of Agricultural and Biological Science, 6(9), 1–7.
فهرسة مساهمة: Keywords: Fluctuating climatic-geographical factors; HPLC-based phytochemicals; Mycotoxin contamination trends; Northern-Pakistan
المشرفين على المادة: 0 (Aflatoxins)
0 (Phytochemicals)
تواريخ الأحداث: Date Created: 20240703 Date Completed: 20240703 Latest Revision: 20240703
رمز التحديث: 20240703
DOI: 10.1007/s10653-024-02045-9
PMID: 38958785
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2983
DOI:10.1007/s10653-024-02045-9