دورية أكاديمية

Linearly Arranged Multi-π-Stacked Structure for Efficient Through-Space Charge-Transfer Emitters.

التفاصيل البيبلوغرافية
العنوان: Linearly Arranged Multi-π-Stacked Structure for Efficient Through-Space Charge-Transfer Emitters.
المؤلفون: Qu YK; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China., Zhou DY; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China., Zheng Q; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China., Zuo P; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China., Che ZL; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China., Liao LS; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.; Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China., Jiang ZQ; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Jul 04, pp. e202408712. Date of Electronic Publication: 2024 Jul 04.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مستخلص: Noncovalent spatial interaction has become an intriguing and important tool for constructing optoelectronic molecules. In this study, we linearly attached three conjugated units in a multi π-stacked manner by using just one trident bridge based on indeno[2,1-b]fluorene. To achieve this structure, we improved the synthetic approach through double C-H activation, significantly simplifying the preparation process. Due to the proximity of the C10, C11, and C12 sites in indeno[2,1-b]fluorene, we derived two novel donor|acceptor|donor (D|A|D) type molecules, 2DMB and 2DMFB, which exhibited closely packed intramolecular stacking, enabling efficient through-space charge transfer. This molecular construction is particularly suitable for developing high-performance thermally activated delayed fluorescence materials. With donor(s) and acceptor(s) constrained and separated within this spatially rigid structure, elevated radiative transition rates, and high photoluminescence quantum yields were achieved. Organic light-emitting diodes incorporating 2DMB and 2DMFB demonstrated superior efficiency, achieving maximum external quantum efficiencies of 28.6 % and 16.2 %, respectively.
(© 2024 Wiley-VCH GmbH.)
References: B. Chang, J. Chen, J. Bao, T. Sun, Z. Cheng, Chem. Rev. 2023, 123, 13966–14037.
W. Tao, O. C. Farokhzad, Chem. Rev. 2022, 122, 5405–5407.
 .
G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, S. Bräse, Adv. Mater. 2021, 33, 2005630;.
H.-H. Cho, D. G. Congrave, A. J. Gillett, S. Montanaro, H. E. Francis, V. Riesgo-Gonzalez, J. Ye, R. Chowdury, W. Zeng, M. K. Etherington, J. Royakkers, O. Millington, A. D. Bond, F. Plasser, J. M. Frost, C. P. Grey, A. Rao, R. H. Friend, N. C. Greenham, H. Bronstein, Nat. Mater. 2024, 23, 519–526.
N. J. Turro, V. Ramamurthy, J. C. Scaiano, Modern molecular photochemistry of organic molecules, Vol. 188, University Science Books Sausalito, CA 2010.
 .
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238;.
Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 1571–1575.
 .
T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater. 2016, 28, 6976–6983;.
W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater. 2018, 30, 1704961;.
Y.-L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, L.-S. Liao, Adv. Mater. 2019, 31, 1902368;.
C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203–207;.
S. O. Jeon, K. H. Lee, J. S. Kim, S.-G. Ihn, Y. S. Chung, J. W. Kim, H. Lee, S. Kim, H. Choi, J. Y. Lee, Nat. Photonics 2021, 15, 208–215;.
Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–682;.
T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photonics 2018, 12, 235–240.
 .
Y. Geng, A. D'Aleo, K. Inada, L.-S. Cui, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 16536–16540;.
Y.-Z. Shi, K. Wang, X. Li, G.-L. Dai, W. Liu, K. Ke, M. Zhang, S.-L. Tao, C.-J. Zheng, X.-M. Ou, X.-H. Zhang, Angew. Chem. Int. Ed. 2018, 57, 9480–9484.
Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915–1016.
 .
K. Kawasumi, T. Wu, T. Zhu, H. S. Chae, T. Van Voorhis, M. A. Baldo, T. M. Swager, J. Am. Chem. Soc. 2015, 137, 11908–11911;.
S.-Y. Yang, Y.-K. Qu, L.-S. Liao, Z.-Q. Jiang, S.-T. Lee, Adv. Mater. 2022, 34, 2104125;.
Q. Xue, G. Xie, Adv. Opt. Mater. 2021, 9, 2002204;.
S. Shao, L. Wang, Aggregate 2020, 1, 45–56;.
T. Zhang, Y. Xiao, H. Wang, S. Kong, R. Huang, V. Ka-Man Au, T. Yu, W. Huang, Angew. Chem. Int. Ed. 2023, 62, e202301896;.
S. Kumar, L. G. Franca, K. Stavrou, E. Crovini, D. B. Cordes, A. M. Z. Slawin, A. P. Monkman, E. Zysman-Colman, J. Phys. Chem. Lett. 2021, 12, 2820–2830;.
Y.-K. Qu, Q. Zheng, J. Fan, L.-S. Liao, Z.-Q. Jiang, Acc. Mater. Res. 2021, 2, 1261–1271;.
Q. Li, J. Hu, J. Lv, X. Wang, S. Shao, L. Wang, X. Jing, F. Wang, Angew. Chem. Int. Ed. 2020, 59, 20174–20182;.
C. Wu, W. Liu, K. Li, G. Cheng, J. Xiong, T. Teng, C.-M. Che, C. Yang, Angew. Chem. Int. Ed. 2021, 60, 3994–3998;.
C. Jiang, J. Miao, D. Zhang, Z. Wen, C. Yang, K. Li, Research 2022, 2022, 9892802;.
L. Chen, C. Li, E. Fu, M. Li, Y. Kuboi, Z.-Y. Li, Z. Chen, J. Chen, X. Liu, X. Tang, L. Frédéric, F. Maurel, C. Adachi, F. Mathevet, S. Zhang, ACS Materials Lett. 2023, 5, 1450–1455.
X. Tang, L.-S. Cui, H.-C. Li, A. J. Gillett, F. Auras, Y.-K. Qu, C. Zhong, S. T. E. Jones, Z.-Q. Jiang, R. H. Friend, L.-S. Liao, Nat. Mater. 2020, 19, 1332–1338.
 .
Y. Song, M. Tian, R. Yu, L. He, ACS Appl. Mater. Interfaces 2021, 13, 60269–60278;.
C.-C. Peng, S.-Y. Yang, H.-C. Li, G.-H. Xie, L.-S. Cui, S.-N. Zou, C. Poriel, Z.-Q. Jiang, L.-S. Liao, Adv. Mater. 2020, 32, 2003885;.
T. Huang, Q. Wang, G. Meng, L. Duan, D. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200059;.
X.-Q. Wang, S.-Y. Yang, Q.-S. Tian, C. Zhong, Y.-K. Qu, Y.-J. Yu, Z.-Q. Jiang, L.-S. Liao, Angew. Chem. Int. Ed. 2021, 60, 5213–5219;.
Z. Zhao, C. Zeng, X. Peng, Y. Liu, H. Zhao, L. Hua, S.-J. Su, S. Yan, Z. Ren, Angew. Chem. Int. Ed. 2022, 61, e202210864;.
Q. Zheng, X.-Q. Wang, Y.-K. Qu, G. Xie, L.-S. Liao, Z.-Q. Jiang, npj Flex. Electron. 2022, 6, 83.
 .
C. Poriel, J. Rault-Berthelot, Acc. Mater. Res. 2022, 3, 379–390;.
M. Romain, D. Tondelier, J.-C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, C. Poriel, Angew. Chem. Int. Ed. 2013, 52, 14147–14151;.
C. Poriel, J. Rault-Berthelot, Chem. Soc. Rev. 2023, 52, 6754–6805.
L. J. Sicard, H.-C. Li, Q. Wang, X.-Y. Liu, O. Jeannin, J. Rault-Berthelot, L.-S. Liao, Z.-Q. Jiang, C. Poriel, Angew. Chem. Int. Ed. 2019, 58, 3848–3853.
 .
J. Das, D. K. Mal, S. Maji, D. Maiti, ACS Catal. 2021, 11, 4205–4229;.
S. K. Sinha, S. Guin, S. Maiti, J. P. Biswas, S. Porey, D. Maiti, Chem. Rev. 2022, 122, 5682–5841;.
C. Arroniz, J. G. Denis, A. Ironmonger, G. Rassias, I. Larrosa, Chem. Sci. 2014, 5, 3509–3514;.
C. Arroniz, A. Ironmonger, G. Rassias, I. Larrosa, Org. Lett. 2013, 15, 910–913.
Deposition Number(s) 2353244 (for 2DMB), 2353245 (for 2DMFB), 2014513 (for DMFB) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
X. Zheng, R. Huang, C. Zhong, G. Xie, W. Ning, M. Huang, F. Ni, F. B. Dias, C. Yang, Adv. Sci. 2020, 7, 1902087.
 .
Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 461–467;.
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
 .
F. B. Dias, J. Santos, D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T. Palmeira, M. N. Berberan-Santos, M. R. Bryce, A. P. Monkman, Adv. Sci. 2016, 3, 1600080;.
V. Lawetz, G. Orlandi, W. Siebrand, J. Chem. Phys. 1972, 56, 4058–4072;.
Y. Olivier, M. Moral, L. Muccioli, J.-C. Sancho-García, J. Mater. Chem. C 2017, 5, 5718–5729;.
J. Chen, X. Xiao, S. Li, Y. Duan, G. Wang, Y. Liao, Q. Peng, H. Fu, H. Geng, Z. Shuai, J. Phys. Chem. Lett. 2022, 13, 2653–2660;.
L. G. Franca, A. Danos, R. Saxena, S. Kuila, K. Stavrou, C. Li, S. Wedler, A. Köhler, A. P. Monkman, J. Phys. Chem. Lett. 2024, 15, 1734–1740;.
H. S. Kim, S. H. Lee, S. Yoo, C. Adachi, Nat. Commun. 2024, 15, 2267;.
T. Hosokai, H. Matsuzaki, H. Nakanotani, K. Tokumaru, T. Tsutsui, A. Furube, K. Nasu, H. Nomura, M. Yahiro, C. Adachi, Sci. Adv. 2017, 3, e1603282.
The EQE of DMFB is nearly consistent with a previous report[12e] at similar luminance.
Y.-K. Qu, D.-Y. Zhou, F.-C. Kong, Q. Zheng, X. Tang, Y.-H. Zhu, C.-C. Huang, Z.-Q. Feng, J. Fan, C. Adachi, L.-S. Liao, Z.-Q. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202201886.
C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García, E. Hénon, Phys. Chem. Chem. Phys. 2017, 19, 17928–17936.
W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
 .
Q. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070–18081;.
T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photonics 2018, 12, 235–240;.
Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics 2014, 8, 326–332.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT 2016.
 .
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305;.
J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
معلومات مُعتمدة: 22175124 National Natural Science Foundation of China; 62175171 National Natural Science Foundation of China; BK20220057 Natural Science Foundation of Jiangsu Province of China
فهرسة مساهمة: Keywords: C−H activation; Spiro compounds; Thermally activated delayed fluorescence; Through-space charge transfer; π-Stacked structure
تواريخ الأحداث: Date Created: 20240704 Latest Revision: 20240820
رمز التحديث: 20240820
DOI: 10.1002/anie.202408712
PMID: 38962896
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202408712