دورية أكاديمية

Single-cell transcriptomic profiling of human pancreatic islets reveals genes responsive to glucose exposure over 24 h.

التفاصيل البيبلوغرافية
العنوان: Single-cell transcriptomic profiling of human pancreatic islets reveals genes responsive to glucose exposure over 24 h.
المؤلفون: Grenko CM; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA., Taylor HJ; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. hjt52@cam.ac.uk.; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. hjt52@cam.ac.uk.; Heart and Lung Research Institute, University of Cambridge, Cambridge, UK. hjt52@cam.ac.uk., Bonnycastle LL; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Xue D; Department of Surgery, Weill Cornell Medicine, New York, NY, USA.; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA., Lee BN; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Weiss Z; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Yan T; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Swift AJ; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Mansell EC; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Lee A; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Robertson CC; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA., Narisu N; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Erdos MR; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Chen S; Department of Surgery, Weill Cornell Medicine, New York, NY, USA.; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA., Collins FS; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. francis.collins@nih.gov., Taylor DL; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
المصدر: Diabetologia [Diabetologia] 2024 Jul 05. Date of Electronic Publication: 2024 Jul 05.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0006777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0428 (Electronic) Linking ISSN: 0012186X NLM ISO Abbreviation: Diabetologia Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin Springer Verlag
مستخلص: Aims/hypothesis: Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant to the onset and progression of diabetes.
Methods: We exposed human pancreatic islets from two donors to low (2.8 mmol/l) and high (15.0 mmol/l) glucose concentrations over 24 h in vitro. To assess the transcriptome, we performed single-cell RNA-seq (scRNA-seq) at seven time points. We modelled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Additionally, we integrated genomic features and genetic summary statistics to nominate candidate effector genes. For three of these genes, we functionally characterised the effect on insulin production and secretion using CRISPR interference to knock down gene expression in EndoC-βH1 cells, followed by a glucose-stimulated insulin secretion assay.
Results: In the discrete time models, we identified 1344 genes associated with time and 668 genes associated with glucose exposure across all cell types and time points. In the continuous time models, we identified 1311 genes associated with time, 345 genes associated with glucose exposure and 418 genes associated with interaction effects between time and glucose across all cell types. By integrating these expression profiles with summary statistics from genetic association studies, we identified 2449 candidate effector genes for type 2 diabetes, HbA 1c , random blood glucose and fasting blood glucose. Of these candidate effector genes, we showed that three (ERO1B, HNRNPA2B1 and RHOBTB3) exhibited an effect on glucose-stimulated insulin production and secretion in EndoC-βH1 cells.
Conclusions/interpretation: The findings of our study provide an in-depth characterisation of the 24 h transcriptomic response of human pancreatic islets to glucose exposure at a single-cell resolution. By integrating differentially expressed genes with genetic signals for type 2 diabetes and glucose-related traits, we provide insights into the molecular mechanisms underlying glucose homeostasis. Finally, we provide functional evidence to support the role of three candidate effector genes in insulin secretion and production.
Data Availability: The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available in the database of Genotypes and Phenotypes (dbGap; https://www.ncbi.nlm.nih.gov/gap/ ) with accession no. phs001188.v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene prediction analyses are available in the Zenodo data repository ( https://zenodo.org/ ) under accession number 11123248. The code used in this study is publicly available at https://github.com/CollinsLabBioComp/publication-islet_glucose_timecourse .
(© 2024. The Author(s).)
التعليقات: Update of: bioRxiv. 2023 Jul 17:2023.06.06.543931. doi: 10.1101/2023.06.06.543931. (PMID: 37333221)
References: International Diabetes Federation (2021) IDF diabetes atlas. International Diabetes Federation, Brussels, Belgium.
Krentz NAJ, Gloyn AL (2020) Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat Rev Endocrinol 16:202–212. https://doi.org/10.1038/s41574-020-0325-0. (PMID: 10.1038/s41574-020-0325-032099086)
Ahmad E, Lim S, Lamptey R et al (2022) Type 2 diabetes. Lancet 400:1803–1820. https://doi.org/10.1016/S0140-6736(22)01655-5. (PMID: 10.1016/S0140-6736(22)01655-536332637)
Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the β cell: the last ten years. Cell 148:1160–1171. https://doi.org/10.1016/j.cell.2012.02.010. (PMID: 10.1016/j.cell.2012.02.010224242275890906)
Gromada J, Chabosseau P, Rutter GA (2018) The α-cell in diabetes mellitus. Nat Rev Endocrinol 14:694–704. https://doi.org/10.1038/s41574-018-0097-y. (PMID: 10.1038/s41574-018-0097-y30310153)
Gao R, Yang T, Zhang Q (2021) δ-cells: the neighborhood watch in the islet community. Biology (Basel) 10:74. https://doi.org/10.3390/biology10020074. (PMID: 10.3390/biology1002007433494193)
Laakso M, Fernandes Silva L (2022) Genetics of type 2 diabetes: past, present, and future. Nutrients 14:3201. https://doi.org/10.3390/nu14153201. (PMID: 10.3390/nu14153201359563779370092)
Taneera J, Fadista J, Ahlqvist E et al (2015) Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet 24:1945–1955. https://doi.org/10.1093/hmg/ddu610. (PMID: 10.1093/hmg/ddu61025489054)
Ottosson-Laakso E, Krus U, Storm P et al (2017) Glucose-induced changes in gene expression in human pancreatic islets: causes or consequences of chronic hyperglycemia. Diabetes 66:3013–3028. https://doi.org/10.2337/db17-0311. (PMID: 10.2337/db17-031128882899)
Hall E, Dekker Nitert M, Volkov P et al (2018) The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol Cell Endocrinol 472:57–67. https://doi.org/10.1016/j.mce.2017.11.019. (PMID: 10.1016/j.mce.2017.11.01929183809)
Kaiser N, Leibowitz G, Nesher R (2003) Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab 16:5–22. https://doi.org/10.1515/jpem.2003.16.1.5. (PMID: 10.1515/jpem.2003.16.1.512585335)
Guardado Mendoza R, Perego C, Finzi G et al (2015) Delta cell death in the islet of Langerhans and the progression from normal glucose tolerance to type 2 diabetes in non-human primates (baboon, Papio hamadryas). Diabetologia 58:1814–1826. https://doi.org/10.1007/s00125-015-3625-5. (PMID: 10.1007/s00125-015-3625-5260493995603258)
Taylor HJ, Hung Y-H, Narisu N et al (2023) Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proc Natl Acad Sci USA 120:e2206797120. https://doi.org/10.1073/pnas.2206797120. (PMID: 10.1073/pnas.2206797120367578899963967)
Fuchsberger C, Abecasis GR, Hinds DA (2015) minimac2: faster genotype imputation. Bioinformatics 31:782–784. https://doi.org/10.1093/bioinformatics/btu704. (PMID: 10.1093/bioinformatics/btu70425338720)
Das S, Forer L, Schönherr S et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48:1284–1287. https://doi.org/10.1038/ng.3656. (PMID: 10.1038/ng.3656275712635157836)
Yang S, Corbett SE, Koga Y et al (2020) Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol 21:57. https://doi.org/10.1186/s13059-020-1950-6. (PMID: 10.1186/s13059-020-1950-6321387707059395)
Hao Y, Hao S, Andersen-Nissen E et al (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573–3587. https://doi.org/10.1016/j.cell.2021.04.048. (PMID: 10.1016/j.cell.2021.04.048340621198238499)
Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8:281-291.e9. https://doi.org/10.1016/j.cels.2018.11.005. (PMID: 10.1016/j.cels.2018.11.005309544766625319)
Wolf FA, Angerer P, Theis FJ (2018) SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19:15. https://doi.org/10.1186/s13059-017-1382-0. (PMID: 10.1186/s13059-017-1382-0294095325802054)
Cattell RB (1966) The scree test for the number of factors. Multivariate Behav Res 1:245–276. https://doi.org/10.1207/s15327906mbr0102_10. (PMID: 10.1207/s15327906mbr0102_1026828106)
Polański K, Young MD, Miao Z et al (2020) BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36:964–965. https://doi.org/10.1093/bioinformatics/btz625. (PMID: 10.1093/bioinformatics/btz62531400197)
Traag VA, Waltman L, van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9:5233. https://doi.org/10.1038/s41598-019-41695-z. (PMID: 10.1038/s41598-019-41695-z309147436435756)
Bergen V, Lange M, Peidli S et al (2020) Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol 38:1408–1414. https://doi.org/10.1038/s41587-020-0591-3. (PMID: 10.1038/s41587-020-0591-332747759)
Finak G, McDavid A, Yajima M et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278. https://doi.org/10.1186/s13059-015-0844-5. (PMID: 10.1186/s13059-015-0844-5266538914676162)
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological) 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. (PMID: 10.1111/j.2517-6161.1995.tb02031.x)
Wu T, Hu E, Xu S et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141. https://doi.org/10.1016/j.xinn.2021.100141. (PMID: 10.1016/j.xinn.2021.10014134557778)
Yu G, Li F, Qin Y et al (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26:976–978. https://doi.org/10.1093/bioinformatics/btq064. (PMID: 10.1093/bioinformatics/btq06420179076)
Yu G (2018) enrichplot: visualization of functional enrichment result. Bioconductor. https://doi.org/10.18129/b9.bioc.enrichplot. (PMID: 10.18129/b9.bioc.enrichplot)
Weeks EM, Ulirsch JC, Cheng NY et al (2023) Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat Genet 55:1267–1276. https://doi.org/10.1038/s41588-023-01443-6. (PMID: 10.1038/s41588-023-01443-63744325410836580)
Legut M, Daniloski Z, Xue X et al (2020) High-throughput screens of PAM-flexible Cas9 variants for gene knockout and transcriptional modulation. Cell Rep 30:2859-2868.e5. https://doi.org/10.1016/j.celrep.2020.02.010. (PMID: 10.1016/j.celrep.2020.02.010321308917558435)
Ravassard P, Hazhouz Y, Pechberty S et al (2011) A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121:3589–3597. https://doi.org/10.1172/JCI58447. (PMID: 10.1172/JCI58447218656453163974)
Xue D, Narisu N, Taylor DL et al (2023) Functional interrogation of twenty type 2 diabetes-associated genes using isogenic human embryonic stem cell-derived β-like cells. Cell Metab 35:1897-1914.e11. https://doi.org/10.1016/j.cmet.2023.09.013. (PMID: 10.1016/j.cmet.2023.09.01337858332)
Fieller EC (1940) The biological standardization of insulin. Suppl J R Stat Soc 7:1. https://doi.org/10.2307/2983630. (PMID: 10.2307/2983630)
Fieller EC (1954) Some problems in interval estimation. J R Stat Soc Series B (Methodological) 16:175–185. https://doi.org/10.1111/j.2517-6161.1954.tb00159.x. (PMID: 10.1111/j.2517-6161.1954.tb00159.x)
Welch BL (1947) The generalization of ‘student’s’ problem when several different population variances are involved. Biometrika 34:28–35. https://doi.org/10.1093/biomet/34.1-2.28. (PMID: 10.1093/biomet/34.1-2.2820287819)
Rorsman P, Ashcroft FM (2018) Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98:117–214. https://doi.org/10.1152/physrev.00008.2017. (PMID: 10.1152/physrev.00008.201729212789)
Wiederkehr A, Wollheim CB (2012) Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 353:128–137. https://doi.org/10.1016/j.mce.2011.07.016. (PMID: 10.1016/j.mce.2011.07.01621784130)
Huang Q-Y, Lai X-N, Qian X-L et al (2019) Cdc42: a novel regulator of insulin secretion and diabetes-associated diseases. Int J Mol Sci 20:179. https://doi.org/10.3390/ijms20010179. (PMID: 10.3390/ijms20010179306213216337499)
Schultz J, Waterstradt R, Kantowski T et al (2016) Precise expression of Fis1 is important for glucose responsiveness of beta cells. J Endocrinol 230:81–91. https://doi.org/10.1530/JOE-16-0111. (PMID: 10.1530/JOE-16-011127179109)
Pugliese A, Miceli D (2002) The insulin gene in diabetes. Diabetes Metab Res Rev 18:13–25. https://doi.org/10.1002/dmrr.261. (PMID: 10.1002/dmrr.26111921414)
Proks P, Arnold AL, Bruining J et al (2006) A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet 15:1793–1800. https://doi.org/10.1093/hmg/ddl101. (PMID: 10.1093/hmg/ddl10116613899)
Babenko AP, Polak M, Cavé H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466. https://doi.org/10.1056/NEJMoa055068. (PMID: 10.1056/NEJMoa05506816885549)
Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345. https://doi.org/10.1126/science.1142382. (PMID: 10.1126/science.1142382174632483214617)
Flannick J, Thorleifsson G, Beer NL et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46:357–363. https://doi.org/10.1038/ng.2915. (PMID: 10.1038/ng.2915245840714051628)
Simaite D, Kofent J, Gong M et al (2014) Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes 63:3557–3564. https://doi.org/10.2337/db13-1784. (PMID: 10.2337/db13-178424848070)
Bonnycastle LL, Gildea DE, Yan T et al (2020) Single-cell transcriptomics from human pancreatic islets: sample preparation matters. Biol Methods Protoc 5:bpz019. https://doi.org/10.1093/biomethods/bpz019. (PMID: 10.1093/biomethods/bpz01931984226)
van den Brink SC, Sage F, Vértesy Á et al (2017) Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 14:935–936. https://doi.org/10.1038/nmeth.4437. (PMID: 10.1038/nmeth.443728960196)
Camunas-Soler J, Dai X-Q, Hang Y et al (2020) Patch-seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab 31:1017-1031.e4. https://doi.org/10.1016/j.cmet.2020.04.005. (PMID: 10.1016/j.cmet.2020.04.005323025277398125)
Glauser DA, Brun T, Gauthier BR, Schlegel W (2007) Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Mol Biol 8:54. https://doi.org/10.1186/1471-2199-8-54. (PMID: 10.1186/1471-2199-8-54175874501914353)
Wortham M, Sander M (2021) Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 32:474–487. https://doi.org/10.1016/j.tem.2021.04.011. (PMID: 10.1016/j.tem.2021.04.011340309258259463)
Taylor DL, Jackson AU, Narisu N et al (2019) Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc Natl Acad Sci USA 116:10883–10888. https://doi.org/10.1073/pnas.1814263116. (PMID: 10.1073/pnas.1814263116310765576561151)
Pagani M, Fabbri M, Benedetti C et al (2000) Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 275:23685–23692. https://doi.org/10.1074/jbc.M003061200. (PMID: 10.1074/jbc.M00306120010818100)
Dias-Gunasekara S, Gubbens J, van Lith M et al (2005) Tissue-specific expression and dimerization of the endoplasmic reticulum oxidoreductase Ero1beta. J Biol Chem 280:33066–33075. https://doi.org/10.1074/jbc.M505023200. (PMID: 10.1074/jbc.M50502320016012172)
Awazawa M, Futami T, Sakada M et al (2014) Deregulation of pancreas-specific oxidoreductin ERO1β in the pathogenesis of diabetes mellitus. Mol Cell Biol 34:1290–1299. https://doi.org/10.1128/MCB.01647-13. (PMID: 10.1128/MCB.01647-13244694023993575)
Zito E, Chin K-T, Blais J et al (2010) ERO1-beta, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J Cell Biol 188:821–832. https://doi.org/10.1083/jcb.200911086. (PMID: 10.1083/jcb.200911086203084252845084)
Alarcón CR, Goodarzi H, Lee H et al (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308. https://doi.org/10.1016/j.cell.2015.08.011. (PMID: 10.1016/j.cell.2015.08.011263216804673968)
Wu B, Su S, Patil DP et al (2018) Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun 9:420. https://doi.org/10.1038/s41467-017-02770-z. (PMID: 10.1038/s41467-017-02770-z293790205789076)
Jeffery N, Richardson S, Chambers D et al (2019) Cellular stressors may alter islet hormone cell proportions by moderation of alternative splicing patterns. Hum Mol Genet 28:2763–2774. https://doi.org/10.1093/hmg/ddz094. (PMID: 10.1093/hmg/ddz094310986406687954)
Vasiljević J, Vasiljević D, Ganß K et al (2021) Insulin mRNA is stored in RNA granules in resting beta cells. BioRxiv 2021.05.07.443159 (Preprint). 29 June 2021. Available from: https://doi.org/10.1101/2021.05.07.443159.
Espinosa EJ, Calero M, Sridevi K, Pfeffer SR (2009) RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137:938–948. https://doi.org/10.1016/j.cell.2009.03.043. (PMID: 10.1016/j.cell.2009.03.043194908982801561)
Haque S, Ames RM, Moore K et al (2020) Islet-expressed circular RNAs are associated with type 2 diabetes status in human primary islets and in peripheral blood. BMC Med Genomics 13:64. https://doi.org/10.1186/s12920-020-0713-2. (PMID: 10.1186/s12920-020-0713-2323122687171860)
معلومات مُعتمدة: 9-22-PDFPM-06 American Diabetes Association; 1U01DK127777-01 United States DK NIDDK NIH HHS; R01 DK116075-01A1 United States DK NIDDK NIH HHS; R01 DK119667-01A1 United States DK NIDDK NIH HHS; R01 DK124463 United States DK NIDDK NIH HHS; ZIA-HG000024 United States NH NIH HHS
فهرسة مساهمة: Keywords: GSIS; Genetics; Genomics; Islets; Single-cell; Transcriptomics; Type 2 diabetes
تواريخ الأحداث: Date Created: 20240705 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1007/s00125-024-06214-4
PMID: 38967666
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0428
DOI:10.1007/s00125-024-06214-4