دورية أكاديمية

Ex Vivo Evaluation of the Function of Hematopoietic Stem Cells in Toxicology of Metals.

التفاصيل البيبلوغرافية
العنوان: Ex Vivo Evaluation of the Function of Hematopoietic Stem Cells in Toxicology of Metals.
المؤلفون: Wu J; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Liu T; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Tang M; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Liu Y; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Wang W; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Wang C; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Ju Y; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Zhao Y; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China., Zhang Y; Experimental Center for Research, School of Public Health, Fudan University, Shanghai, China.
المصدر: Current protocols [Curr Protoc] 2024 Jul; Vol. 4 (7), pp. e1038.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101773894 Publication Model: Print Cited Medium: Internet ISSN: 2691-1299 (Electronic) Linking ISSN: 26911299 NLM ISO Abbreviation: Curr Protoc Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, [2021]-
مواضيع طبية MeSH: Hematopoietic Stem Cells*/drug effects , Hematopoietic Stem Cells*/metabolism , Hematopoietic Stem Cells*/cytology, Animals ; Metals/toxicity ; Mice ; Humans ; Hematopoietic Stem Cell Transplantation ; Flow Cytometry/methods
مستخلص: A variety of metals, e.g., lead (Pb), cadmium (Cd), and lithium (Li), are in the environment and are toxic to humans. Hematopoietic stem cells (HSCs) reside at the apex of hematopoiesis and are capable of generating all kinds of blood cells and self-renew to maintain the HSC pool. HSCs are sensitive to environmental stimuli. Metals may influence the function of HSCs by directly acting on HSCs or indirectly by affecting the surrounding microenvironment for HSCs in the bone marrow (BM) or niche, including cellular and extracellular components. Investigating the impact of direct and/or indirect actions of metals on HSCs contributes to the understanding of immunological and hematopoietic toxicology of metals. Treatment of HSCs with metals ex vivo, and the ensuing HSC transplantation assays, are useful for evaluating the impacts of the direct actions of metals on the function of HSCs. Investigating the mechanisms involved, given the rarity of HSCs, methods that require large numbers of cells are not suitable for signal screening; however, flow cytometry is a useful tool for signal screening HSCs. After targeting signaling pathways, interventions ex vivo and HSCs transplantation are required to confirm the roles of the signaling pathways in regulating the function of HSCs exposed to metals. Here, we describe protocols to evaluate the mechanisms of direct and indirect action of metals on HSCs. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Identify the impact of a metal on the competence of HSCs Basic Protocol 2: Identify the impact of a metal on the lineage bias of HSC differentiation Basic Protocol 3: Screen the potential signaling molecules in HSCs during metal exposure Alternate Protocol 1: Ex vivo treatment with a metal on purified HSCs Alternate Protocol 2: Ex vivo intervention of the signaling pathway regulating the function of HSCs during metal exposure.
(© 2024 Wiley Periodicals LLC.)
التعليقات: Erratum in: Curr Protoc. 2024 Jul;4(7):e1115. doi: 10.1002/cpz1.1115. (PMID: 39040032)
References: Bjorklund, G., Dadar, M., Chirumbolo, S., Aaseth, J., & Peana, M. (2020). Metals, autoimmunity, and neuroendocrinology: Is there a connection? Environmental Research, 187, 109541. https://doi.org/10.1016/j.envres.2020.109541.
Florian, M. C., Dörr, K., Niebel, A., Daria, D., Schrezenmeier, H., Rojewski, M., Filippi, M. D., Hasenberg, A., Gunzer, M., Scharffetter‐Kochanek, K., Zheng, Y., & Geiger, H. (2012). Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell, 10, 520–530. https://doi.org/10.1016/j.stem.2012.04.007.
Ghosh, J., & Kapur, R. (2017). Role of mTORC1‐S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. Experimental Hematology, 50, 13–21. https://doi.org/10.1016/j.exphem.2017.02.004.
Hu, M. J., Lu, Y. K., Zeng, H., Zhang, Z. H., Chen, S. L., Qi, Y., Xu, Y., Chen, F., Tang, Y., Chen, M., Du, C., Shen, M., Wang, F., Su, Y., Wang, S., & Wang, J. (2021). MicroRNA‐21 maintains hematopoietic stem cell homeostasis through sustaining the nuclear factor‐κB signaling pathway in mice. Haematologica, 106, 412–423. https://doi.org/10.3324/haematol.2019.236927.
Kasbekar, M., Mitchell, C. A., Proven, M. A., & Passegué, E. (2023). Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell, 30, 1403–1420. https://doi.org/10.1016/j.stem.2023.09.013.
Kwarteng, E. O., & Heinonen, K. M. (2016). Competitive transplants to evaluate hematopoietic stem cell fitness. JoVE Journal of Visualized Experiments, (114), 54345. https://doi.org/10.3791/54345.
Li, Q., Yang, Z., Zhao, Y., Jia, X., Zhou, Z., & Zhang, Y. (2018). Phenotypic and functional evaluation of hematopoietic stem and progenitor cells in toxicology of heavy metals. Current Protocols in Toxicology, 75, 22.7.1–22.7.14. https://doi.org/10.1002/cptx.41.
Li, Q., Yang, Z. L., Zhang, P., Zhao, Y. F., Yu, X. C., Xue, P., Shao, Y. M., Li, Q., Jia, X. D., Zhang, Q., Cheng, L., He, M., Zhou, Z., & Zhang, Y. (2018). Mercury impact on hematopoietic stem cells is regulated by IFNγ‐dependent bone marrow‐resident macrophages in mice. Toxicology Letters, 295, 54–63. https://doi.org/10.1016/j.toxlet.2018.05.037.
Liu, Y. L., Zhao, Y. F., Wu, J. J., Liu, T., Tang, M. K., Yao, Y., Xue, P., He, M., Xu, Y. Y., Zhang, P., Gu, M., Qu, W., & Zhang, Y. (2023). Lithium impacts the function of hematopoietic stem cells via disturbing the endoplasmic reticulum stress and Hsp90 signaling. Food and Chemical Toxicology, 181, 114081. https://doi.org/10.1016/j.fct.2023.114081.
López‐Ruano, G., Prieto‐Bermejo, R., Ramos, T. L., San‐Segundo, L., Sánchez‐Abarca, L. I., Sánchez‐Guijo, F., Pérez‐Simon, J. A., Sánchez‐Yagüe, J., Llanillo, M., & Hernández‐Hernández, A. (2015). PTPN13 and β‐catenin regulate the quiescence of hematopoietic stem cells and their interaction with the bone marrow niche. Stem Cell Reports, 5, 516–531. https://doi.org/10.1016/j.stemcr.2015.08.003.
Metcalf, D. (2007). On hematopoietic stem cell fate. Immunity, 26, 669–673. https://doi.org/10.1016/j.immuni.2007.05.012.
Mirkov, I., Aleksandrov, A. P., Ninkov, M., Tucovic, D., Kulas, J., Zeljkovic, M., Popovic, D., & Kataranovski, M. (2021). Immunotoxicology of cadmium: Cells of the immune system as targets and effectors of cadmium toxicity. Food and Chemical Toxicology, 149, 112026. https://doi.org/10.1016/j.fct.2021.112026.
Morcos, M. N. F., Li, C. X., Munz, C. M., Greco, A., Dressel, N., Reinhardt, S., Sameith, K., Dahl, A., Becker, N. B., Roers, A., Höfer, T., & Gerbaulet, A. (2022). Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis. Nature Communication, 13, 4504. https://doi.org/10.1038/s41467‐022‐31914‐z.
Morganti, C., Cabezas‐Wallscheid, N., & Ito, K. (2022). Metabolic regulation of hematopoietic stem cells. Hemasphere, 6, e740. https://doi.org/10.1097/HS9.0000000000000740.
Pinho, S., Marchand, T., Yang, E., Wei, Q. Z., Nerlov, C., & Frenette, P. S. (2018). Lineage‐biased hematopoietic stem cells are regulated by distinct niches. Dev Cell, 44, 634–641.e4. https://doi.org/10.1016/j.devcel.2018.01.016.
Rubio‐Lara, J. A., Igarashi, K. J., Sood, S., Johansson, A., Sommerkamp, P., Yamashita, M., & Lin, D. S. (2023). Expanding hematopoietic stem cell ex vivo: Recent advances and technical considerations. Experimental Hematology, 125, 6–15. https://doi.org/10.1016/j.exphem.2023.07.006.
Suda, T., Takubo, K., & Semenza, G. L. (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9, 298–310. https://doi.org/10.1016/j.stem.2011.09.010.
Zhang, Y. D., Yu, X. C., Sun, S. H., Li, Q., Xie, Y. L., Li, Q., Zhao, Y. F., Pei, J. F., Zhang, W. M., Xue, P., Zhou, Z., & Zhang, Y. (2016). Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice. Toxicology and Applied Pharmacology, 313, 24–34. https://doi.org/10.1016/j.taap.2016.10.016.
Zhao, Y. F., He, J. Y., Zhu, T. T., Zhang, Y. F., Zhai, Y., Xue, P., Yao, Y., Zhou, Z. J., He, M., Qu, W. D., & Zhang, Y. B. (2022). Cadmium exposure reprograms energy metabolism of hematopoietic stem cells to promote myelopoiesis at the expense of lymphopoiesis in mice. Ecotox Environ Safe, 231, https://doi.org/10.1016/j.ecoenv.2022.113208.
Zhao, Y. F., Li, Q., Yang, Z. L., Shao, Y. M., Xue, P., Qu, W. D., Jia, X. D., Cheng, L. Z., He, M., He, R., Zhou, Z., & Zhang, Y. (2018). Cadmium activates noncanonical Wnt signaling to impair hematopoietic stem cell function in mice. Toxicological Sciences, 165, 254–266. https://doi.org/10.1093/toxsci/kfy166.
Zhao, Y. F., Li, Q., Zhu, T. T., He, J. Y., Xue, P., Zheng, W. W., Yao, Y., Qu, W. D., Zhou, Z. J., Lu, R. Z., Zhou, Z., He, R., He, M., & Zhang, Y. (2021). Lead in synergism with IFNγ acts on bone marrow‐resident macrophages to increase the quiescence of hematopoietic stem cells. Toxicological Sciences, 180, 369–382. https://doi.org/10.1093/toxsci/kfab001.
Zhao, Y. F., Wu, J. J., Xu, H., Li, Q., Zhang, Y. F., Zhai, Y., Tang, M. K., Liu, Y. L., Liu, T., Ye, Y., He, M., He, R., Xu, Y., Zhou, Z., Kan, H., & Zhang, Y. (2023). Lead exposure suppresses the Wnt3a/β‐catenin signaling to increase the quiescence of hematopoietic stem cells via reducing the expression of CD70 on bone marrow‐resident macrophages. Toxicological Sciences, 195, 123–142. https://doi.org/10.1093/toxsci/kfad067.
معلومات مُعتمدة: 82173546 National Natural Science Foundation of China; GWVI-11.1-39 Shanghai 3-year Public Health Action Plan
فهرسة مساهمة: Keywords: competence; ex vivo intervention; hematopoietic stem cells; lineage bias; metal; signal screening
المشرفين على المادة: 0 (Metals)
تواريخ الأحداث: Date Created: 20240705 Date Completed: 20240705 Latest Revision: 20240723
رمز التحديث: 20240723
DOI: 10.1002/cpz1.1038
PMID: 38967962
قاعدة البيانات: MEDLINE
الوصف
تدمد:2691-1299
DOI:10.1002/cpz1.1038