دورية أكاديمية

HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer.

التفاصيل البيبلوغرافية
العنوان: HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer.
المؤلفون: Besse A; Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland.; Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic., Sedlarikova L; Babak Myeloma Group, Department of Pathological Physiology, Masaryk University, Brno, 62500, Czech Republic.; Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic., Buechler L; Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland., Kraus M; Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland., Yang CH; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Strakova N; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, 612 00, Czech Republic.; Veterinary Research Institute, Brno, 62500, Czech Republic., Soucek K; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, 612 00, Czech Republic.; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic., Navratil J; Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, 62500, Czech Republic.; Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic., Svoboda M; Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, 62500, Czech Republic.; Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic., Welm AL; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Joerger M; Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland., Driessen C; Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland.; Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland., Besse L; Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, 9000, Switzerland. Lenka.besse@kssg.ch.; Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic. Lenka.besse@kssg.ch.
المصدر: British journal of cancer [Br J Cancer] 2024 Jul 05. Date of Electronic Publication: 2024 Jul 05.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group on behalf of Cancer Research UK Country of Publication: England NLM ID: 0370635 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1532-1827 (Electronic) Linking ISSN: 00070920 NLM ISO Abbreviation: Br J Cancer Subsets: MEDLINE
أسماء مطبوعة: Publication: 2002- : London : Nature Publishing Group on behalf of Cancer Research UK
Original Publication: London, Lewis.
مستخلص: Background: Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies.
Methods: We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations.
Results: Carfilzomib, via proteasome β5 + β2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits β5 + β1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2.
Conclusion: Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.
(© 2024. The Author(s).)
References: Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell. 2012;150:549–62. (PMID: 22863008343888910.1016/j.cell.2012.06.031)
Chen L, Brewer MD, Guo L, Wang R, Jiang P, Yang X. Enhanced degradation of misfolded proteins promotes Tumorigenesis. Cell Rep. 2017;18:3143–54. (PMID: 28355566560391310.1016/j.celrep.2017.03.010)
Petrocca F, Altschuler G, Tan SM, Mendillo ML, Yan H, Jerry DJ, et al. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell. 2013;24:182–96. (PMID: 23948298377332910.1016/j.ccr.2013.07.008)
Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol. 2005;6:79–87. (PMID: 1568806910.1038/nrm1552)
Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem. 1997;272:25200–9. (PMID: 931213410.1074/jbc.272.40.25200)
Arendt CS, Hochstrasser M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA. 1997;94:7156–61. (PMID: 92070602377610.1073/pnas.94.14.7156)
Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf DH, et al. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA. 1999;96:10976–83. (PMID: 105001113422910.1073/pnas.96.20.10976)
Besse A, Besse L, Kraus M, Mendez-Lopez M, Bader J, Xin BT, et al. Proteasome inhibition in multiple myeloma: head-to-head comparison of currently available Proteasome inhibitors. Cell Chem Biol. 2019;26:340–51.e3. (PMID: 3061295210.1016/j.chembiol.2018.11.007)
Zhou X, Besse A, Peter J, Steinhardt MJ, Vogt C, Nerreter S, et al. High-dose carfilzomib achieves superior anti-tumor activity over lowdose and recaptures response in relapsed/refractory multiple myeloma resistant to low-dose carfilzomib by co-inhibiting the beta2 and beta1 subunits of the proteasome complex. Haematologica. 2023;108:1628–39. (PMID: 367274031023041610.3324/haematol.2022.282225)
Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, et al. Inhibition of the Proteasome beta2 Site sensitizes triple-negative breast cancer cells to beta5 inhibitors and suppresses Nrf1 activation. Cell Chem Biol. 2017;24:218–30. (PMID: 28132893534161710.1016/j.chembiol.2016.12.016)
Besse A, Stolze SC, Rasche L, Weinhold N, Morgan GJ, Kraus M, et al. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia. 2018;32:391–401. (PMID: 2867666910.1038/leu.2017.212)
Kraus M, Bader J, Overkleeft H, Driessen C. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance. Blood Cancer J. 2013;3:e103. (PMID: 23454896361521510.1038/bcj.2013.2)
Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014;508:103–7. (PMID: 24670641410513310.1038/nature13119)
Deshmukh RR, Kim S, Elghoul Y, Dou QP. P-Glycoprotein inhibition sensitizes human breast cancer cells to proteasome inhibitors. J Cell Biochem. 2017;118:1239–48. (PMID: 27813130685899810.1002/jcb.25783)
Jiang D, Turner B, Song J, Li R, Diehn M, Le QT, et al. Comprehensive analysis of the unfolded protein response in breast cancer subtypes. JCO Precis Oncol. 2017;2017:PO.16.00073. (PMID: 29888341)
Harnoss JM, Le Thomas A, Reichelt M, Guttman O, Wu TD, Marsters SA, et al. IRE1alpha disruption in triple-negative breast cancer cooperates with antiangiogenic therapy by reversing ER stress adaptation and remodeling the tumor microenvironment. Cancer Res. 2020;80:2368–79. (PMID: 32265225727231010.1158/0008-5472.CAN-19-3108)
Remsik J, Fedr R, Navratil J, Bino L, Slabakova E, Fabian P, et al. Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br J Cancer. 2018;118:813–9. (PMID: 29462126588612710.1038/bjc.2017.497)
Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer. 2022;3:232–50. (PMID: 35221336888246810.1038/s43018-022-00337-6)
Scherer SD, Zhao L, Butterfield AJ, Yang CH, Cortes-Sanchez E, Guillen KP, et al. Breast cancer PDxO cultures for drug discovery and functional precision oncology. STAR Protoc. 2023;4:102402. (PMID: 374021701033905810.1016/j.xpro.2023.102402)
Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al. SynergyFinder Plus: Toward better interpretation and annotation of drug combination screening datasets. Genomics Proteom Bioinforma. 2022;20:587–96. (PMID: 10.1016/j.gpb.2022.01.004)
Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015;13:504–13. (PMID: 26949479475912810.1016/j.csbj.2015.09.001)
de Bruin G, Xin BT, Kraus M, van der Stelt M, van der Marel GA, Kisselev AF, et al. A set of activity-based probes to visualize human (immuno)proteasome activities. Angew Chem Int Ed Engl. 2016;55:4199–203. (PMID: 2651121010.1002/anie.201509092)
Kraus M, Bader J, Geurink PP, Weyburne ES, Mirabella AC, Silzle T, et al. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells. Haematologica. 2015;100:1350–60. (PMID: 26069288459176810.3324/haematol.2014.109421)
Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91. (PMID: 1177946410.1016/S0092-8674(01)00611-0)
Bakunts A, Orsi A, Vitale M, Cattaneo A, Lari F, Tade L, et al. Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude. Elife. 2017;6:e27518. (PMID: 29251598579209210.7554/eLife.27518)
Kanekura K, Ishigaki S, Merksamer PI, Papa FR, Urano F. Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells. Lab Invest. 2013;93:1254–8. (PMID: 24042438409093610.1038/labinvest.2013.112)
Lai CW, Aronson DE, Snapp EL. BiP availability distinguishes states of homeostasis and stress in the endoplasmic reticulum of living cells. Mol Biol Cell. 2010;21:1909–21. (PMID: 20410136288393610.1091/mbc.e09-12-1066)
Yang Z, Zhang J, Jiang D, Khatri P, Solow-Cordero DE, Toesca DAS, et al. A human genome-wide RNAi screen reveals diverse modulators that mediate IRE1alpha-XBP1 activation. Mol Cancer Res. 2018;16:745–53. (PMID: 29440447593222810.1158/1541-7786.MCR-17-0307)
Borjan B, Kern J, Steiner N, Gunsilius E, Wolf D, Untergasser G. Spliced XBP1 levels determine sensitivity of multiple myeloma cells to proteasome inhibitor Bortezomib independent of the unfolded protein response mediator GRP78. Front Oncol. 2019;9:1530. (PMID: 3203901610.3389/fonc.2019.01530)
Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A, Iland H, et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica. 2012;97:64–72. (PMID: 21993678324893210.3324/haematol.2011.043331)
Abt D, Besse A, Sedlarikova L, Kraus M, Bader J, Silzle T, et al. Improving the efficacy of proteasome inhibitors in the treatment of renal cell carcinoma by combination with the human immunodeficiency virus (HIV)-protease inhibitors lopinavir or nelfinavir. BJU Int. 2018;121:600–9. (PMID: 2916175310.1111/bju.14083)
Besse L, Kraus M, Besse A, Driessen C, Tarantino I. The cytotoxic activity of carfilzomib together with nelfinavir is superior to the bortezomib/nelfinavir combination in non-small cell lung carcinoma. Sci Rep. 2023;13:4411. (PMID: 369321751002376910.1038/s41598-023-31400-6)
Besse L, Besse A, Stolze SC, Sobh A, Zaal EA, van der Ham AJ, et al. Treatment with HIV-Protease inhibitor Nelfinavir identifies membrane lipid composition and fluidity as a therapeutic target in advanced multiple myeloma. Cancer Res. 2021;81:4581–93. (PMID: 34158378761161610.1158/0008-5472.CAN-20-3323)
Kawabata S, Gills JJ, Mercado-Matos JR, Lopiccolo J, Wilson W 3rd, Hollander MC, et al. Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death Dis. 2012;3:e353. (PMID: 22825471340658610.1038/cddis.2012.87)
Kraus M, Muller-Ide H, Ruckrich T, Bader J, Overkleeft H, Driessen C. Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leuk Res. 2014;38:383–92. (PMID: 2441875210.1016/j.leukres.2013.12.017)
Fassmannova D, Sedlak F, Sedlacek J, Spicka I, Grantz Saskova K. Nelfinavir Inhibits the TCF11/Nrf1-mediated Proteasome recovery pathway in multiple myeloma. Cancers. 2020;12:1065. (PMID: 32344880728110810.3390/cancers12051065)
Marques-Santos LF, Oliveira JG, Maia RC, Rumjanek VM. Mitotracker green is a P-glycoprotein substrate. Biosci Rep. 2003;23:199–212. (PMID: 1476343710.1023/B:BIRE.0000007693.33521.18)
Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, et al. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood. 2009;114:3439–47. (PMID: 1967191810.1182/blood-2009-05-223677)
Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006;281:8582–90. (PMID: 1645565010.1074/jbc.M509043200)
Ruckrich T, Kraus M, Gogel J, Beck A, Ovaa H, Verdoes M, et al. Characterization of the ubiquitin-proteasome system in bortezomib-adapted cells. Leukemia. 2009;23:1098–105. (PMID: 1922553210.1038/leu.2009.8)
Kraus M, Bader J, Geurink PP, Weyburne ES, Mirabella AC, Silzle T, et al. The novel beta2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells. Haematologica. 2015;100:1350–60. (PMID: 26069288459176810.3324/haematol.2014.109421)
Taura M, Kariya R, Kudo E, Goto H, Iwawaki T, Amano M, et al. Comparative analysis of ER stress response into HIV protease inhibitors: lopinavir but not darunavir induces potent ER stress response via ROS/JNK pathway. Free Radic Biol Med. 2013;65:778–88. (PMID: 2397363710.1016/j.freeradbiomed.2013.08.161)
Shim JS, Rao R, Beebe K, Neckers L, Han I, Nahta R, et al. Selective inhibition of HER2-positive breast cancer cells by the HIV protease inhibitor nelfinavir. J Natl Cancer Inst. 2012;104:1576–90. (PMID: 23042933347297110.1093/jnci/djs396)
Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, Abu-Asab MS, et al. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res. 2007;13:5183–94. (PMID: 1778557510.1158/1078-0432.CCR-07-0161)
Lawrence RT, Perez EM, Hernandez D, Miller CP, Haas KM, Irie HY, et al. The proteomic landscape of triple-negative breast cancer. Cell Rep. 2015;11:990. (PMID: 2884328310.1016/j.celrep.2015.04.059)
Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, et al. GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol. 2016;23:567–78. (PMID: 27185638487671910.1016/j.chembiol.2016.03.017)
Larsson P, Pettersson D, Olsson M, Sarathchandra S, Abramsson A, Zetterberg H, et al. Repurposing proteasome inhibitors for improved treatment of triple-negative breast cancer. Cell Death Discov. 2024;10:57. (PMID: 382868541082513310.1038/s41420-024-01819-5)
Driessen C, Kraus M, Joerger M, Rosing H, Bader J, Hitz F, et al. Treatment with the HIV protease inhibitor nelfinavir triggers the unfolded protein response and may overcome proteasome inhibitor resistance of multiple myeloma in combination with bortezomib: a phase I trial (SAKK 65/08). Haematologica. 2016;101:346–55. (PMID: 26659919481572610.3324/haematol.2015.135780)
Driessen C, Muller R, Novak U, Cantoni N, Betticher D, Mach N, et al. The HIV Protease inhibitor Nelfinavir in combination with Bortezomib and Dexamethasone (NVd) has excellent activity in patients with advanced, proteasome inhibitor-refractory multiple myeloma: a multicenter Phase II trial (SAKK 39/13). Blood. 2016;128:6. (PMID: 10.1182/blood.V128.22.487.487)
Bennett R, Chan H, Henderson R, Merriman E, Hanna M, Elinder-Camburn A, et al. The addition of lopinavir-ritonavir to carfilzomib-based triplets can induce meaningful clinical response in carfilzomib-refractory myeloma patients: a single-center experience. Leuk Lymphoma. 2022;63:1738–41. (PMID: 3514747410.1080/10428194.2022.2038374)
Gadalla HH, Lee S, Kim H, Armstrong AT, Fathalla D, Habib F, et al. Size optimization of carfilzomib nanocrystals for systemic delivery to solid tumors. J Control Rel. 2022;352:637–51. (PMID: 10.1016/j.jconrel.2022.10.041)
Adwal A, Kalita-de Croft P, Shakya R, Lim M, Kalaw E, Taege LD, et al. Tradeoff between metabolic i-proteasome addiction and immune evasion in triple-negative breast cancer. Life Sci Alliance. 2020;3:e201900562. (PMID: 32423906724074310.26508/lsa.201900562)
معلومات مُعتمدة: KFS-4990-02-2020 Krebsliga Schweiz (Ligue Suisse Contre le Cancer); KFS-4990-02-2020 Krebsliga Schweiz (Ligue Suisse Contre le Cancer); U54CA224076 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI); U54CA224076 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI); NU-21-08-00023 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
تواريخ الأحداث: Date Created: 20240705 Latest Revision: 20240705
رمز التحديث: 20240706
DOI: 10.1038/s41416-024-02774-9
PMID: 38969867
قاعدة البيانات: MEDLINE
الوصف
تدمد:1532-1827
DOI:10.1038/s41416-024-02774-9