دورية أكاديمية

Sex and Age Differences in Ontogeny of Alloparenting: A Relation to Forebrain DRD1, DRD2, and HTR2A mRNA Expression?

التفاصيل البيبلوغرافية
العنوان: Sex and Age Differences in Ontogeny of Alloparenting: A Relation to Forebrain DRD1, DRD2, and HTR2A mRNA Expression?
المؤلفون: Huang Y; Faculty of Psychology, Southwest University, Chongqing, China.; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China., Qing R; Faculty of Psychology, Southwest University, Chongqing, China.; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China., Yang Y; Faculty of Psychology, Southwest University, Chongqing, China.; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China., Li M; Department of Psychology, Nanjing University, Nanjing, China., Gao J; Faculty of Psychology, Southwest University, Chongqing, China.; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China.
المصدر: Developmental psychobiology [Dev Psychobiol] 2024 Sep; Vol. 66 (6), pp. e22524.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Interscience Country of Publication: United States NLM ID: 0164074 Publication Model: Print Cited Medium: Internet ISSN: 1098-2302 (Electronic) Linking ISSN: 00121630 NLM ISO Abbreviation: Dev Psychobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley Interscience
Original Publication: New York, Interscience Publishers.
مواضيع طبية MeSH: Receptors, Dopamine D2*/metabolism , Receptors, Dopamine D2*/genetics , Receptors, Dopamine D1*/metabolism , Receptors, Dopamine D1*/genetics , RNA, Messenger*/metabolism , RNA, Messenger*/genetics , Receptor, Serotonin, 5-HT2A*/metabolism , Receptor, Serotonin, 5-HT2A*/genetics , Prosencephalon*/metabolism, Animals ; Male ; Rats ; Female ; Empathy/physiology ; Age Factors ; Sex Characteristics ; Rats, Sprague-Dawley ; Behavior, Animal/physiology ; Amygdala/metabolism
مستخلص: Alloparenting refers to the practice of caring for the young by individuals other than their biological parents. The relationship between the dynamic changes in psychological functions underlying alloparenting and the development of specific neuroreceptors remains unclear. Using a classic 10-day pup sensitization procedure, together with a pup preference and pup retrieval test on the EPM (elevated plus maze), we showed that both male and female adolescent rats (24 days old) had significantly shorter latency than adult rats (65 days old) to be alloparental, and their motivation levels for pups and objects were also significantly higher. In contrast, adult rats retrieved more pups than adolescent rats even though they appeared to be more anxious on the EPM. Analysis of mRNA expression using real-time-PCR revealed a higher dopamine D 2 receptor (DRD2) receptor expression in adult hippocampus, amygdala, and ventral striatum, along with higher dopamine D 1 receptor (DRD1) receptor expression in ventral striatum compared to adolescent rats. Adult rats also showed significantly higher levels of 5-hydroxytryptamine receptor 2A (HTR2A) receptor expression in the medial prefrontal cortex, amygdala, ventral striatum, and hypothalamus. These results suggest that the faster onset of alloparenting in adolescent rats compared to adult rats, along with the psychological functions involved, may be mediated by varying levels of dopamine DRD1, DRD2, and HTR2A in different forebrain regions.
(© 2024 Wiley Periodicals LLC.)
References: Adinolfi, A., C. Carbone, D. Leo, R. R. Gainetdinov, G. Laviola, and W. Adriani. 2018. “Novelty‐Related Behavior of Young and Adult Dopamine Transporter Knockout Rats: Implication for Cognitive and Emotional Phenotypic Patterns.” Genes, Brain, and Behavior 17, no. 4: e12463. https://doi.org/10.1111/gbb.12463.
Aznar, S., and S. Hervig Mel. 2016. “The 5‐HT2A Serotonin Receptor in Executive Function: Implications for Neuropsychiatric and Neurodegenerative Diseases.” Neuroscience and Biobehavioral Reviews 64: 63–82. https://doi.org/10.1016/j.neubiorev.2016.02.008.
Bădescu, I., D. P. Watts, M. A. Katzenberg, and D. W. Sellen. 2016. “Alloparenting Is Associated With Reduced Maternal Lactation Effort and Faster Weaning in Wild Chimpanzees.” Royal Society Open Science 3, no. 11: 160577. https://doi.org/10.1098/rsos.160577.
Bales, K. L., and W. Saltzman. 2016. “Fathering in Rodents: Neurobiological Substrates and Consequences for Offspring.” Hormones and Behavior 77: 249–259. https://doi.org/10.1016/j.yhbeh.2015.05.021.
Ball, K. T., and G. V. Rebec. 2005. “Role of 5‐HT2A and 5‐HT2C/B Receptors in the Acute Effects of 3,4‐Methylenedioxymethamphetamine (MDMA) on Striatal Single‐Unit Activity and Locomotion in Freely Moving Rats.” Psychopharmacology 181, no. 4: 676–687. https://doi.org/10.1007/s00213‐005‐0038‐z.
Bartolomé, I., A. Llidó, S. Darbra, and M. Pallarès. 2018. “Early Post‐Natal Neuroactive Steroid Manipulation Modulates Ondansetron Effects on Initial Periods of Alcohol Consumption in Rats.” Physiology & Behavior 194: 371–379. https://doi.org/10.1016/j.physbeh.2018.06.031.
Bogin, B., J. Bragg, and C. Kuzawa. 2014. “Humans Are Not Cooperative Breeders but Practice Biocultural Reproduction.” Annals of Human Biology 41, no. 4: 368–380. https://doi.org/10.3109/03014460.2014.923938.
Bridges, R. S., M. X. Zarrow, B. D. Goldman, and V. H. Denenberg. 1974. “A Developmental Study of Maternal Responsiveness in the Rat.” Physiology & Behavior 12, no. 1: 149–151. https://doi.org/10.1016/0031‐9384(74)90082‐1.
Brown, R. E. 1986. “Social and Hormonal Factors Influencing Infanticide and Its Suppression in Adult Male Long‐Evans Rats (Rattus norvegicus).” Journal of Comparative Psychology 100, no. 2: 155–161.
Brunelli, S. A., R. D. Shindledecker, and M. A. Hofer. 1987. “Behavioral Responses of Adolescent Rats (Rattus norvegicus) to Neonates After Infusion of Maternal Blood Plasma.” Journal of Comparative Psychology 101, no. 1: 47–59.
Byrnes, J. J., E. D. Gleason, M. K. Schoen, et al. 2011. “Accelerated Maternal Responding Following Intra‐VTA Pertussis Toxin Treatment.” Behavioural Brain Research 223, no. 2: 322–328. https://doi.org/10.1016/j.bbr.2011.04.048.
Carli, M., M. Baviera, R. W. Invernizzi, and C. Balducci. 2006. “Dissociable Contribution of 5‐HT1A and 5‐HT2A Receptors in the Medial Prefrontal Cortex to Different Aspects of Executive Control Such as Impulsivity and Compulsive Perseveration in Rats.” Neuropsychopharmacology 31, no. 4: 757–767. https://doi.org/10.1038/sj.npp.1300893.
Chen, A. P. F., L. Chen, T. A. Kim, and Q. Xiong. 2021. “Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease.” Biomedicines 9, no. 6: 647. https://doi.org/10.3390/biomedicines9060647.
Douglas, L. A., E. I. Varlinskaya, and L. P. Spear. 2003. “Novel‐Object Place Conditioning in Adolescent and Adult Male and Female Rats: Effects of Social Isolation.” Physiology & Behavior 80, no. 2–3: 317–325. https://doi.org/10.1016/j.physbeh.2003.08.003.
Douglas, L. A., E. I. Varlinskaya, and L. P. Spear. 2004. “Rewarding Properties of Social Interactions in Adolescent and Adult Male and Female Rats: Impact of Social Versus Isolate Housing of Subjects and Partners.” Developmental Psychobiology 45, no. 3: 153–162. https://doi.org/10.1002/dev.20025.
Ebrahimi‐Ghiri, M., M. Nasehi, and M. R. Zarrindast. 2018. “The Modulatory Role of Accumbens and Hippocampus D2 Receptors in Anxiety and Memory.” Naunyn‐Schmiedeberg's Archives of Pharmacology 391, no. 10: 1107–1118. https://doi.org/10.1007/s00210‐018‐1534‐0.
Fleming, A. 1986. “Psychobiology of Rat Maternal Behavior: How and Where Hormones Act to Promote Maternal Behavior at Parturition.” Annals of the New York Academy of Sciences 474: 234–251. https://doi.org/10.1111/j.1749‐6632.1986.tb28015.x.
Fleming, A. S., and C. Luebke. 1981. “Timidity Prevents the Virgin Female Rat From Being a Good Mother: Emotionality Differences Between Nulliparous and Parturient Females.” Physiology & Behavior 27, no. 5: 863–868. https://www.ncbi.nlm.nih.gov/pubmed/7323193.
Gabriel, P., T. A. Mastracchio, K. Bordner, and R. Jeffrey. 2020. “Impact of Enriched Environment During Adolescence on Adult Social Behavior, Hippocampal Synaptic Density and Dopamine D2 Receptor Expression in Rats.” Physiology & Behavior 226: 113133. https://doi.org/10.1016/j.physbeh.2020.113133.
Gao, J., L. Nie, Y. Li, and M. Li. 2020. “Serotonin 5‐HT(2A) and 5‐HT(2C) Receptors Regulate Rat Maternal Behavior Through Distinct Behavioral and Neural Mechanisms.” Neuropharmacology 162: 107848. https://doi.org/10.1016/j.neuropharm.2019.107848.
Gao, J., R. Wu, C. Davis, and M. Li. 2018. “Activation of 5‐HT(2A) Receptor Disrupts Rat Maternal Behavior.” Neuropharmacology 128: 96–105. https://doi.org/10.1016/j.neuropharm.2017.09.037.
Gulledge, C. C., P. E. Mann, R. S. Bridges, M. Bialos, and R. P. Hammer Jr. 2000. “Expression of Mu‐Opioid Receptor mRNA in the Medial Preoptic Area of Adolescent Rats.” Brain Research Developmental Brain Research 119, no. 2: 269–276. https://doi.org/10.1016/s0165‐3806(99)00184‐4.
Hamdan, J. N., J. A. Sierra‐Fonseca, R. J. Flores, et al. 2022. “Early‐Life Adversity Increases Anxiety‐Like Behavior and Modifies Synaptic Protein Expression in a Region‐Specific Manner.” Frontiers in Behavioral Neuroscience 16: 1008556. https://doi.org/10.3389/fnbeh.2022.1008556.
Hansen, S. 1994. “Maternal Behavior of Female Rats With 6‐OHDA Lesions in the Ventral Striatum: Characterization of the Pup Retrieval Deficit.” Physiology & Behavior 55, no. 4: 615–620. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8190785.
Hansen, S., A. H. Bergvall, and S. Nyiredi. 1993. “Interaction With Pups Enhances Dopamine Release in the Ventral Striatum of Maternal Rats: A Microdialysis Study.” Pharmacology Biochemistry and Behavior 45, no. 3: 673–676. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7687357.
Harding, K. M., and J. S. Lonstein. 2016. “Extensive Adolescent “Babysitting” Facilitates Later Adult Maternal Responsiveness, Decreases Anxiety, and Increases Dorsal Raphe Tryptophan Hydroxylase‐2 Expression in Female Laboratory Rats.” Developmental Psychobiology 58, no. 4: 492–508. https://doi.org/10.1002/dev.21392.
Hostetler, C. M., S. L. Harkey, and K. L. Bales. 2010. “D2 Antagonist During Development Decreases Anxiety and Infanticidal Behavior in Adult Female Prairie Voles (Microtus ochrogaster).” Behavioural Brain Research 210, no. 1: 127–130. https://doi.org/10.1016/j.bbr.2010.02.010.
Hrdy, S. B. 2016. “Variable Postpartum Responsiveness Among Humans and Other Primates With “Cooperative Breeding”: A Comparative and Evolutionary Perspective.” Hormones and Behavior 77: 272–283. https://doi.org/10.1016/j.yhbeh.2015.10.016.
Kalinichev, M., J. S. Rosenblatt, and J. I. Morrell. 2000. “The Medial Preoptic Area, Necessary for Adult Maternal Behavior in Rats, Is Only Partially Established as a Component of the Neural Circuit That Supports Maternal Behavior in Adolescent Rats.” Behavioral Neuroscience 114, no. 1: 196–210. https://doi.org/10.1037//0735‐7044.114.1.196.
Kenkel, W. M., A. M. Perkeybile, and C. S. Carter. 2017. “The Neurobiological Causes and Effects of Alloparenting.” Developmental Neurobiology 77, no. 2: 214–232. https://doi.org/10.1002/dneu.22465.
Kleiman, D. G. 1977. “Monogamy in Mammals.” Quarterly Review of Biology 52, no. 1: 39–69. https://doi.org/10.1086/409721.
Lazic, S. E., and L. Essioux. 2013. “Improving Basic and Translational Science by Accounting for Litter‐to‐Litter Variation in Animal Models.” BMC Neuroscience [Electronic Resource] 14: 37. https://doi.org/10.1186/1471‐2202‐14‐37.
Li, M. 2015. “Antipsychotic Drugs on Maternal Behavior in Rats.” Behavioural Pharmacology 26, no. 6: 616–626. https://doi.org/10.1097/fbp.0000000000000168.
Li, M. 2020. “Psychological and Neurobiological Mechanisms Underlying the Decline of Maternal Behavior.” Neuroscience and Biobehavioral Reviews 116: 164–181. https://doi.org/10.1016/j.neubiorev.2020.06.009.
Li, M. 2023. “The Medial Prefrontal Regulation of Maternal Behavior Across Postpartum: A Triadic Model.” Psychological Review 130, no. 4: 873–895. https://doi.org/10.1037/rev0000374.
Li, M., R. Budin, A. S. Fleming, and S. Kapur. 2005. “Effects of Chronic Typical and atypical Antipsychotic Drug Treatment on Maternal Behavior in Rats.” Schizophrenia Research 75, no. 2–3: 325–336. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15885524.
Li, X., X. Ding, R. Wu, et al. 2018. “A Behavioral Mechanistic Investigation of the Role of 5‐HT(1A) Receptors in the Mediation of Rat Maternal Behavior.” Pharmacology Biochemistry and Behavior 169: 16–26. https://doi.org/10.1016/j.pbb.2018.04.002.
Li, Z., Z. Chen, G. Fan, A. Li, J. Yuan, and T. Xu. 2018. “Cell‐Type‐Specific Afferent Innervation of the Nucleus Accumbens Core and Shell.” Frontiers in Neuroanatomy 12: 84. https://doi.org/10.3389/fnana.2018.00084.
Lonstein, J. S., and G. J. De Vries. 2000. “Sex Differences in the Parental Behavior of Rodents.” Neuroscience and Biobehavioral Reviews 24, no. 6: 669–686. https://doi.org/10.1016/s0149‐7634(00)00036‐1.
Lucas, G., and U. Spampinato. 2000. “Role of Striatal Serotonin2A and Serotonin2C Receptor Subtypes in the Control of In Vivo Dopamine Outflow in the Rat Striatum.” Journal of Neurochemistry 74, no. 2: 693–701. https://doi.org/10.1046/j.1471‐4159.2000.740693.x.
Lv, K., C. Yang, R. Xiao, et al. 2020. “Dexmedetomidine Attenuates Ethanol‐Induced Inhibition of Hippocampal Neurogenesis in Neonatal Mice.” Toxicology and Applied Pharmacology 390: 114881. https://doi.org/10.1016/j.taap.2020.114881.
Mayer, A. D., N. C. Freeman, and J. S. Rosenblatt. 1979. “Ontogeny of Maternal Behavior in the Laboratory Rat: Factors Underlying Changes in Responsiveness From 30 to 90 Days.” Developmental Psychobiology 12, no. 5: 425–439. https://doi.org/10.1002/dev.420120503.
Mayer, A. D., and J. S. Rosenblatt. 1979. “Ontogeny of Maternal Behavior in the Laboratory Rat: Early Origins in 18‐ to 27‐Day‐Old Young.” Developmental Psychobiology 12, no. 5: 407–424. https://doi.org/10.1002/dev.420120502.
McCullough, K. M., N. P. Daskalakis, G. Gafford, F. G. Morrison, and K. J. Ressler. 2018. “Cell‐Type‐Specific Interrogation of CeA Drd2 Neurons to Identify Targets for Pharmacological Modulation of Fear Extinction.” Translational Psychiatry 8, no. 1: 164. https://doi.org/10.1038/s41398‐018‐0190‐y.
Muller, J. M., H. Moore, M. M. Myers, and H. N. Shair. 2009. “Dopamine's Role in Social Modulation of Infant Isolation‐Induced Vocalization: II. Maternally Modulated Infant Separation Responses Are Regulated by D1‐ and D2‐Family Dopamine Receptors.” Developmental Psychobiology 51, no. 2: 158–172. https://doi.org/10.1002/dev.20355.
Nephew, B. C., D. F. Lovelock, and R. S. Bridges. 2008. “The Progesterone Receptor and Parental Behavior in Adolescent Rats.” Developmental Psychobiology 50, no. 6: 535–541. https://doi.org/10.1002/dev.20324.
Nie, L., T. Di, Y. Li, P. Cheng, M. Li, and J. Gao. 2018. “Blockade of Serotonin 5‐HT(2A) Receptors Potentiates Dopamine D(2) Activation‐Induced Disruption of Pup Retrieval on an Elevated Plus Maze, but Has No Effect on D(2) Blockade‐Induced One.” Pharmacology Biochemistry and Behavior 171: 74–84. https://doi.org/10.1016/j.pbb.2018.06.004.
Numan, M. 2006. “Hypothalamic Neural Circuits Regulating Maternal Responsiveness Toward Infants.” Behavioral and Cognitive Neuroscience Reviews 5, no. 4: 163–190. https://doi.org/10.1177/1534582306288790.
Numan, M. 2007. “Motivational Systems and the Neural Circuitry of Maternal Behavior in the Rat.” Developmental Psychobiology 49, no. 1: 12–21. https://doi.org/10.1002/dev.20198.
Numan, M. 2020. The Parental Brain: Mechanisms, Development, and Evolution. Oxford: Oxford University Press.
Numan, M., M. J. Numan, N. Pliakou, et al. 2005. “The Effects of D1 or D2 Dopamine Receptor Antagonism in the Medial Preoptic Area, Ventral Pallidum, or Nucleus Accumbens on the Maternal Retrieval Response and Other Aspects of Maternal Behavior in Rats.” Behavioral Neuroscience 119, no. 6: 1588–1604. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16420162.
Okabe, S., Y. Tsuneoka, A. Takahashi, et al. 2017. “Pup Exposure Facilitates Retrieving Behavior via the Oxytocin Neural System in Female Mice.” Psychoneuroendocrinology 79: 20–30. https://doi.org/10.1016/j.psyneuen.2017.01.036.
Olazabal, D. E., and L. J. Young. 2005. “Variability in “Spontaneous” Maternal Behavior Is Associated With Anxiety‐Like Behavior and Affiliation in Naive Adolescent and Adult Female prairie Voles (Microtus ochrogaster).” Developmental Psychobiology 47, no. 2: 166–178. https://doi.org/10.1002/dev.20077.
Pędzich, B. D., S. Rubens, M. Sekssaoui, et al. 2022. “Effects of a Psychedelic 5‐HT2A Receptor Agonist on Anxiety‐Related Behavior and Fear Processing in Mice.” Neuropsychopharmacology 47, no. 7: 1304–1314. https://doi.org/10.1038/s41386‐022‐01324‐2.
Pereira, M., A. M. Farrar, J. Hockemeyer, C. E. Muller, J. D. Salamone, and J. I. Morrell. 2011. “Effect of the Adenosine A2A Receptor Antagonist MSX‐3 on Motivational Disruptions of Maternal Behavior Induced by Dopamine Antagonism in the Early Postpartum Rat.” Psychopharmacology 213, no. 1: 69–79. https://doi.org/10.1007/s00213‐010‐2015‐4.
Pereira, M., and A. Ferreira. 2006. “Demanding Pups Improve Maternal Behavioral Impairments in Sensitized and Haloperidol‐Treated Lactating Female Rats.” Behavioural Brain Research 175, no. 1: 139–148. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16996623.
Pereira, M., and J. I. Morrell. 2011. “Functional Mapping of the Neural Circuitry of Rat Maternal Motivation: Effects of Site‐Specific Transient Neural Inactivation.” Journal of Neuroendocrinology 23, no. 11: 1020–1035. https://doi.org/10.1111/j.1365‐2826.2011.02200.x.
Pereira, M., N. Uriarte, D. Agrati, M. J. Zuluaga, and A. Ferreira. 2005. “Motivational Aspects of Maternal Anxiolysis in Lactating Rats.” Psychopharmacology 180, no. 2: 241–248. https://doi.org/10.1007/s00213‐005‐2157‐y.
Puzerey, P. A., M. J. Decker, and R. F. Galán. 2014. “Elevated Serotonergic Signaling Amplifies Synaptic Noise and Facilitates the Emergence of Epileptiform Network Oscillations.” Journal of Neurophysiology 112, no. 10: 2357–2373. https://doi.org/10.1152/jn.00031.2014.
Quadagno, D. M., and J. Rockwell. 1972. “The Effect of Gonadal Hormones in Infancy on Maternal Behavior in the Adult Rat.” Hormones and Behavior 3, no. 1: 55–62. https://doi.org/10.1016/0018‐506x(72)90007‐4.
Raynaud, J., and C. Schradin. 2015. “Corticosterone Levels Correlate With Alloparental Care in a Sex‐Dependent Manner in African Striped Mice, Rhabdomys Pumilio.” Ethology 121, no. 1: 57–67. https://doi.org/10.1111/eth.12317.
Rosenberg, K. M. 1974. “Effects of Pre‐ and Postpubertal Castration and Testosterone on Pup‐Killing Behavior in the Male Rat.” Physiology & Behavior 13, no. 1: 159–161. https://doi.org/10.1016/0031‐9384(74)90319‐9.
Russell, P. A. 1973. “Relationships Between Exploratory Behaviour and Fear: A Review.” British Journal of Psychology 64, no. 3: 417–433. https://doi.org/10.1111/j.2044‐8295.1973.tb01369.x.
Scanlan, V. F., E. M. Byrnes, and R. S. Bridges. 2006. “Reproductive Experience and Activation of Maternal Memory.” Behavioral Neuroscience 120, no. 3: 676–686. https://doi.org/10.1037/0735‐7044.120.3.676.
Schmidt, C. J., C. K. Sullivan, and G. M. Fadayel. 1994. “Blockade of Striatal 5‐Hydroxytryptamine2 Receptors Reduces the Increase in Extracellular Concentrations of Dopamine Produced by the Amphetamine Analogue 3,4‐Methylenedioxymethamphetamine.” Journal of Neurochemistry 62, no. 4: 1382–1389. https://doi.org/10.1046/j.1471‐4159.1994.62041382.x.
Schradin, C., P. Vuarin, and R. Rimbach. 2018. “The Neoteny‐Helper Hypothesis: When to Expect and When Not to Expect Endocrine Mechanisms to Regulate Allo‐Parental Care?” Physiology & Behavior 193, no. pt. A: 127–134. https://doi.org/10.1016/j.physbeh.2017.12.008.
Seward, C. H., M. C. Saul, J. M. Troy, et al. 2022. “An Epigenomic Shift in Amygdala Marks the Transition to Maternal Behaviors in Alloparenting virgin Female Mice.” PLoS ONE 17, no. 2: e0263632. https://doi.org/10.1371/journal.pone.0263632.
Silva, M. R., M. M. Bernardi, and L. F. Felicio. 2001. “Effects of Dopamine Receptor Antagonists on Ongoing Maternal Behavior in Rats.” Pharmacology Biochemistry and Behavior 68, no. 3: 461–468. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11325400.
Smeaton, T. C., D. E. Arcondoulis, and P. A. Steele. 1975. “The Synthesis of Testosterone and Estradiol‐17beta by the Gonads of Neonatal Rats in Vitro.” Steroids 26, no. 2: 181–192. https://doi.org/10.1016/s0039‐128x(75)80019‐5.
Soares‐Cunha, C., A. V. Domingues, R. Correia, et al. 2022. “Distinct Role of Nucleus Accumbens D2‐MSN Projections to Ventral Pallidum in Different Phases of Motivated Behavior.” Cell Reports 38, no. 7: 110380. https://doi.org/10.1016/j.celrep.2022.110380.
Soria‐Fregozo, C., M. I. Pérez‐Vega, I. González‐Burgos, A. Feria‐Velasco, and C. Beas‐Zárate. 2008. “Prefrontal Serotonergic Denervation Induces Increase in the Density of 5‐HT2A Receptors in Adult Rat Prefrontal Cortex.” Neurochemical Research 33, no. 11: 2350–2357. https://doi.org/10.1007/s11064‐008‐9740‐7.
Van de Kar, L. D., A. Javed, Y. Zhang, F. Serres, D. K. Raap, and T. S. Gray. 2001. “5‐HT2A receptors Stimulate ACTH, Corticosterone, Oxytocin, Renin, and Prolactin Release and Activate Hypothalamic CRF and Oxytocin‐Expressing Cells.” Journal of Neuroscience 21, no. 10: 3572–3579. https://doi.org/10.1523/jneurosci.21‐10‐03572.2001.
Wellman, J., D. Carr, A. Graham, et al. 1997. “Preoptic Area Infusions of Morphine Disrupt—and Naloxone Restores—Parental‐Like Behavior in Adolescent Rats.” Brain Research Bulletin 44, no. 2: 183–191. https://doi.org/10.1016/s0361‐9230(97)00111‐1.
Wu, M., Y. Chen, Z. Shen, et al. 2022. “Electroacupuncture Alleviates Anxiety‐Like Behaviors Induced by Chronic Neuropathic Pain via Regulating Different Dopamine Receptors of the Basolateral Amygdala.” Molecular Neurobiology 59, no. 9: 5299–5311. https://doi.org/10.1007/s12035‐022‐02911‐6.
Wu, R., C. Davis, and M. Li. 2018. “Behavioral Mechanisms Underlying the Maternal Disruptive Effect of Serotonin 5‐HT(2A) Receptor Activation in Sprague‐Dawley Rats.” Journal of Neural Transmission (Vienna) 125, no. 7: 1065–1075. https://doi.org/10.1007/s00702‐018‐1878‐0.
Wu, R., Z. Xu, Z. Song, and F. Tai. 2023. “Providing or Receiving Alloparental Care Promote Partner Preference and Alter central Oxytocin and Dopamine Systems in Adult Mandarin Voles.” Hormones and Behavior 152: 105366. https://doi.org/10.1016/j.yhbeh.2023.105366.
Yang, Y., J. Qin, W. Chen, N. Sui, H. Chen, and M. Li. 2015. “Behavioral and Pharmacological Investigation of Anxiety and Maternal Responsiveness of Postpartum Female Rats in a Pup Elevated Plus Maze.” Behavioural Brain Research 292: 414–427. https://doi.org/10.1016/j.bbr.2015.07.010.
Zangrossi Júnior, H., and F. G. Graeff. 1994. “Behavioral Effects of Intra‐Amygdala Injections of GABA and 5‐HT Acting Drugs in the Elevated Plus‐Maze.” Brazilian Journal of Medical and Biological Research 27, no. 10: 2453–2456.
Zaniewska, M., N. Alenina, K. Wydra, et al. 2015. “Discovering the Mechanisms Underlying Serotonin (5‐HT)2A and 5‐HT2C Receptor Regulation Following Nicotine Withdrawal in Rats.” Journal of Neurochemistry 134, no. 4: 704–716. https://doi.org/10.1111/jnc.13192.
Zarrindast, M. R., S. Mahboobi, M. S. Sadat‐Shirazi, and S. Ahmadi. 2011. “Anxiolytic‐Like Effect Induced by the Cannabinoid CB1 Receptor Agonist, Arachydonilcyclopropylamide (ACPA), in the Rat Amygdala Is Mediated Through the D1 and D2 Dopaminergic Systems.” Journal of Psychopharmacology 25, no. 1: 131–140. https://doi.org/10.1177/0269881110376688.
Zhao, C., and M. Li. 2009. “The Receptor Mechanisms Underlying the Disruptive Effects of Haloperidol and Clozapine on Rat Maternal Behavior: A Double Dissociation Between Dopamine D(2) and 5‐HT(2A/2C) Receptors.” Pharmacology Biochemistry and Behavior 93, no. 4: 433–442. https://doi.org/10.1016/j.pbb.2009.06.005.
معلومات مُعتمدة: SWU2109223 Fundamental Research Funds for the Central Universities; cstc2020jcyj-msxmX0209 Chongqing Natural Science Foundation; 32071059 National Natural Science Foundation of China; SYJ2024019 Experimental Technology Research Project at Southwest University
فهرسة مساهمة: Keywords: 5‐HT2A receptor; age; alloparenting; dopamine D1 receptor; dopamine D2 receptor; sex
المشرفين على المادة: 0 (Receptors, Dopamine D2)
0 (Receptors, Dopamine D1)
0 (RNA, Messenger)
0 (Receptor, Serotonin, 5-HT2A)
0 (DRD2 protein, rat)
0 (Drd1 protein, rat)
تواريخ الأحداث: Date Created: 20240708 Date Completed: 20240708 Latest Revision: 20240708
رمز التحديث: 20240708
DOI: 10.1002/dev.22524
PMID: 38973227
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-2302
DOI:10.1002/dev.22524