دورية أكاديمية

Stearidonic acid improves eicosapentaenoic acid status: studies in humans and cultured hepatocytes.

التفاصيل البيبلوغرافية
العنوان: Stearidonic acid improves eicosapentaenoic acid status: studies in humans and cultured hepatocytes.
المؤلفون: Seidel U; Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany., Eberhardt K; Institute of Food Chemistry, TU Braunschweig, Braunschweig, Germany., Wiebel M; Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany., Luersen K; Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany., Ipharraguerre IR; Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany., Haegele FA; Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany., Winterhalter P; Institute of Food Chemistry, TU Braunschweig, Braunschweig, Germany., Bosy-Westphal A; Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany., Schebb NH; Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany., Rimbach G; Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany.
المصدر: Frontiers in nutrition [Front Nutr] 2024 Apr 04; Vol. 11, pp. 1359958. Date of Electronic Publication: 2024 Apr 04 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Media S. A Country of Publication: Switzerland NLM ID: 101642264 Publication Model: eCollection Cited Medium: Print ISSN: 2296-861X (Print) Linking ISSN: 2296861X NLM ISO Abbreviation: Front Nutr Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne, Switzerland : Frontiers Media S. A., [2014]-
مستخلص: Background: Ahiflower oil from the seeds of Buglossoides arvensis is rich in α-linolenic acid (ALA) and stearidonic acid (SDA). ALA and SDA are potential precursor fatty acids for the endogenous synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are n3-long chain polyunsaturated fatty acids (n3-LC-PUFAS), in humans. Since taurine, an amino sulfonic acid, is often associated with tissues rich in n3-LC-PUFAS (e.g., in fatty fish, human retina), taurine may play a role in EPA- and DHA-metabolism.
Objective: To examine the capacity of the plant-derived precursor fatty acids (ALA and SDA) and of the potential fatty acid metabolism modulator taurine to increase n3-LC-PUFAS and their respective oxylipins in human plasma and cultivated hepatocytes (HepG2 cells).
Methods: In a monocentric, randomized crossover study 29 healthy male volunteers received three sequential interventions, namely ahiflower oil (9 g/day), taurine (1.5 g/day) and ahiflower oil (9 g/day) + taurine (1.5 g/day) for 20 days. In addition, cultivated HepG2 cells were treated with isolated fatty acids ALA, SDA, EPA, DHA as well as taurine alone or together with SDA.
Results: Oral ahiflower oil intake significantly improved plasma EPA levels (0.2 vs. 0.6% of total fatty acid methyl esters (FAMES)) in humans, whereas DHA levels were unaffected by treatments. EPA-levels in SDA-treated HepG2 cells were 65% higher (5.1 vs. 3.0% of total FAMES) than those in ALA-treated cells. Taurine did not affect fatty acid profiles in human plasma in vivo or in HepG2 cells in vitro . SDA-rich ahiflower oil and isolated SDA led to an increase in EPA-derived oxylipins in humans and in HepG2 cells, respectively.
Conclusion: The consumption of ahiflower oil improves the circulating levels of EPA and EPA-derived oxylipins in humans. In cultivated hepatocytes, EPA and EPA-derived oxylipins are more effectively increased by SDA than ALA.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2024 Seidel, Eberhardt, Wiebel, Luersen, Ipharraguerre, Haegele, Winterhalter, Bosy-Westphal, Schebb and Rimbach.)
References: Anal Bioanal Chem. 2015 Jul;407(18):5503-11. (PMID: 25943261)
Biochim Biophys Acta. 1993 Apr 7;1167(2):109-13. (PMID: 8466936)
Am J Clin Nutr. 2019 May 1;109(5):1251-1263. (PMID: 31006007)
Nutrients. 2019 May 30;11(6):. (PMID: 31151215)
Nutrients. 2017 Mar 10;9(3):. (PMID: 28287415)
Prog Lipid Res. 2020 Jan;77:101017. (PMID: 31809755)
Mol Cell Biochem. 1992 Nov 18;117(2):107-18. (PMID: 1336810)
Lipids Health Dis. 2015 Sep 02;14:99. (PMID: 26328782)
Clin Cardiol. 2009 Jul;32(7):365-72. (PMID: 19609891)
Animal. 2020 Nov;14(11):2414-2422. (PMID: 32423522)
Mol Cell Biochem. 1976 Jul 30;12(1):3-8. (PMID: 184376)
Biochim Biophys Acta. 2016 Feb;1861(2):91-97. (PMID: 26597785)
CNS Neurosci Ther. 2021 Apr;27(4):403-412. (PMID: 33621439)
Prostaglandins Leukot Essent Fatty Acids. 2010 Aug;83(2):61-8. (PMID: 20573490)
Prog Lipid Res. 1981;20:13-22. (PMID: 7342077)
Metabolites. 2022 Dec 09;12(12):. (PMID: 36557276)
Front Pharmacol. 2019 Mar 07;10:169. (PMID: 30899221)
Mol Nutr Food Res. 2019 Aug;63(16):e1800569. (PMID: 30211983)
Front Nutr. 2018 Nov 14;5:106. (PMID: 30488034)
FASEB J. 2021 Apr;35(4):e21491. (PMID: 33710695)
Neurochem Res. 1999 Nov;24(11):1339-46. (PMID: 10555773)
Food Funct. 2020 Oct 21;11(10):9177-9191. (PMID: 33030169)
Acta Physiol Lat Am. 1975;25(1):3-11. (PMID: 176870)
J Nutr Sci. 2016 Jan 08;5:e2. (PMID: 26793308)
J Nutr Biochem. 2015 Mar;26(3):211-8. (PMID: 25573539)
Lipids Health Dis. 2017 Oct 10;16(1):197. (PMID: 29017507)
Biochem Soc Trans. 2017 Oct 15;45(5):1105-1115. (PMID: 28900017)
Lipids Health Dis. 2016 Feb 18;15:32. (PMID: 26892399)
Genes (Basel). 2022 Apr 15;13(4):. (PMID: 35456508)
Nutr Metab (Lond). 2009 Feb 19;6:8. (PMID: 19228394)
Biochem Pharmacol. 2011 Mar 1;81(5):649-60. (PMID: 21184748)
Neuro Endocrinol Lett. 2011;32 Suppl 2:41-50. (PMID: 22101882)
Adv Nutr. 2015 Sep 15;6(5):513-40. (PMID: 26374175)
Prog Lipid Res. 2022 Apr;86:101165. (PMID: 35508275)
J Neurosci Res. 1983;9(2):135-43. (PMID: 6405048)
Ann Intern Med. 2014 Mar 18;160(6):398-406. (PMID: 24723079)
Anal Bioanal Chem. 2023 Feb;415(5):913-933. (PMID: 36683060)
Circulation. 2013 Nov 5;128(19):2154-61. (PMID: 24190935)
Pediatr Res. 1987 Jul;22(1):67-71. (PMID: 3627875)
Front Pharmacol. 2022 Mar 02;13:838782. (PMID: 35308198)
J Lipid Res. 2009 Jun;50(6):1195-202. (PMID: 19202133)
Sci Rep. 2019 Nov 15;9(1):16888. (PMID: 31729437)
PLoS One. 2019 Jan 15;14(1):e0210197. (PMID: 30645603)
Prostaglandins Leukot Essent Fatty Acids. 2014 Feb-Mar;90(2-3):27-37. (PMID: 24411718)
Anal Chim Acta. 2018 Dec 11;1037:63-74. (PMID: 30292316)
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Jan;1869(1):159422. (PMID: 37977491)
Mol Cell Biochem. 1977 Jul 5;16(2):197-203. (PMID: 196185)
J Child Adolesc Psychopharmacol. 2017 Apr;27(3):223-233. (PMID: 28157380)
Antioxidants (Basel). 2020 Oct 31;9(11):. (PMID: 33142756)
Function (Oxf). 2022 Dec 29;4(2):zqac069. (PMID: 36778746)
Proc Nutr Soc. 2008 Nov;67(4):409-18. (PMID: 18847518)
J Nutr. 2021 Oct 1;151(10):3053-3066. (PMID: 34293124)
J Inherit Metab Dis. 2015 Jul;38(4):681-702. (PMID: 25687155)
Metabolism. 2013 May;62(5):686-93. (PMID: 23347535)
Prostaglandins Leukot Essent Fatty Acids. 2014 Dec;91(6):235-41. (PMID: 25458899)
Am J Clin Nutr. 2006 Jun;83(6 Suppl):1483S-1493S. (PMID: 16841858)
J Lipid Res. 2009 Jun;50(6):1015-38. (PMID: 19244215)
Adv Exp Med Biol. 2020;1274:71-99. (PMID: 32894508)
PLoS One. 2017 Sep 8;12(9):e0184470. (PMID: 28886129)
Food Funct. 2018 Mar 1;9(3):1587-1600. (PMID: 29459911)
JPEN J Parenter Enteral Nutr. 2010 May-Jun;34(3):263-70. (PMID: 20467008)
Am J Clin Nutr. 1993 May;57(5 Suppl):732S-736S; discussion 736S-737S. (PMID: 8386433)
Metabolites. 2022 Oct 22;12(11):. (PMID: 36355090)
فهرسة مساهمة: Keywords: HepG2 cells; ahiflower oil; crossover-study; eicosanoids; oxylipins; taurine
تواريخ الأحداث: Date Created: 20240708 Latest Revision: 20240709
رمز التحديث: 20240709
مُعرف محوري في PubMed: PMC11225816
DOI: 10.3389/fnut.2024.1359958
PMID: 38974810
قاعدة البيانات: MEDLINE
الوصف
تدمد:2296-861X
DOI:10.3389/fnut.2024.1359958