دورية أكاديمية

The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner.

التفاصيل البيبلوغرافية
العنوان: The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner.
المؤلفون: DeCotiis-Mauro J; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA., Han SM; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA., Mello H; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA., Goyeneche C; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA., Marchesini-Tovar G; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA., Jin L; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA., Bellofatto V; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA., Lukac DM; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA.
المصدر: Journal of virology [J Virol] 2024 Aug 20; Vol. 98 (8), pp. e0078824. Date of Electronic Publication: 2024 Jul 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society For Microbiology Country of Publication: United States NLM ID: 0113724 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5514 (Electronic) Linking ISSN: 0022538X NLM ISO Abbreviation: J Virol Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington Dc : American Society For Microbiology
Original Publication: Baltimore, American Society for Microbiology.
مواضيع طبية MeSH: Herpesvirus 8, Human*/physiology , Herpesvirus 8, Human*/metabolism , Herpesvirus 8, Human*/genetics , Virus Activation* , Trans-Activators*/metabolism , Trans-Activators*/genetics , Receptor, Notch1*/metabolism , Receptor, Notch1*/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein*/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein*/genetics , Immediate-Early Proteins*/metabolism , Immediate-Early Proteins*/genetics , Virus Latency*, Humans ; Animals ; Vero Cells ; Chlorocebus aethiops ; Signal Transduction ; Transcription Factors/metabolism ; Transcription Factors/genetics ; Gene Expression Regulation, Viral ; Nuclear Proteins/metabolism ; Nuclear Proteins/genetics ; DNA-Binding Proteins
مستخلص: The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation.
Importance: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Competing Interests: The authors declare no conflict of interest.
References: Dev Biol. 2000 May 15;221(2):390-403. (PMID: 10790334)
PLoS Pathog. 2009 Oct;5(10):e1000616. (PMID: 19816565)
J Virol. 2008 Nov;82(21):10709-23. (PMID: 18715905)
Nat Struct Mol Biol. 2010 Nov;17(11):1312-7. (PMID: 20972443)
Virology. 2008 Oct 25;380(2):264-75. (PMID: 18786687)
J Virol. 2006 Oct;80(19):9697-709. (PMID: 16973574)
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3788-93. (PMID: 11891328)
J Virol. 2011 Nov;85(22):11901-15. (PMID: 21880753)
Cancer Discov. 2014 Oct;4(10):1154-67. (PMID: 25104330)
Philos Trans R Soc Lond B Biol Sci. 2019 May 27;374(1773):20180300. (PMID: 30955494)
Cell Host Microbe. 2011 Dec 15;10(6):577-90. (PMID: 22177562)
J Virol. 1999 Nov;73(11):9348-61. (PMID: 10516043)
Science. 2004 Oct 8;306(5694):269-71. (PMID: 15472075)
J Virol. 2006 Jun;80(11):5251-60. (PMID: 16699005)
Front Cell Dev Biol. 2020 Dec 21;8:613557. (PMID: 33425921)
J Virol. 2011 Apr;85(8):3833-41. (PMID: 21289111)
Nat Commun. 2018 Jan 4;9(1):49. (PMID: 29302027)
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14908-13. (PMID: 21737748)
Front Oncol. 2018 Nov 26;8:550. (PMID: 30534535)
Cancer Biol Ther. 2009 Nov;8(22):2136-43. (PMID: 19783901)
Semin Cell Dev Biol. 2020 Sep;105:27-42. (PMID: 32616437)
Genes Dev. 2013 May 1;27(9):1059-71. (PMID: 23651858)
J Virol. 2014 Jan;88(2):1281-92. (PMID: 24227836)
Nat Protoc. 2006;1(1):179-85. (PMID: 17406230)
Mol Cancer Ther. 2023 Jan 3;22(1):3-11. (PMID: 36223541)
Mol Cell Biol. 2002 Nov;22(21):7688-700. (PMID: 12370315)
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8490-5. (PMID: 12832621)
J Virol. 2004 Aug;78(16):8615-29. (PMID: 15280471)
J Virol. 2009 May;83(9):4435-46. (PMID: 19244329)
Dev Cell. 2018 Mar 12;44(5):611-623.e7. (PMID: 29478922)
Genes Dev. 2010 Nov 1;24(21):2395-407. (PMID: 20935071)
Cell Rep. 2017 Oct 17;21(3):784-797. (PMID: 29045844)
Cancer Res. 2008 Mar 15;68(6):1881-8. (PMID: 18339869)
J Neurosci. 2012 Apr 18;32(16):5654-66. (PMID: 22514327)
Circ Res. 2013 Sep 27;113(8):975-85. (PMID: 23965337)
J Virol. 2006 Jul;80(13):6411-9. (PMID: 16775329)
Blood. 2004 Sep 15;104(6):1696-702. (PMID: 15187027)
Cancer Cell. 2015 Dec 14;28(6):730-742. (PMID: 26669487)
Sci Signal. 2009 Jan 27;2(55):ra1. (PMID: 19176515)
Antimicrob Agents Chemother. 2011 Jun;55(6):2696-703. (PMID: 21402841)
J Neurosci. 2017 Dec 6;37(49):11867-11880. (PMID: 29101245)
EMBO Rep. 2001 Sep;2(9):835-41. (PMID: 11520861)
Curr Biol. 2005 Jan 26;15(2):94-104. (PMID: 15668164)
J Biol Chem. 2001 Oct 26;276(43):40268-73. (PMID: 11518718)
Cancer Res. 2012 Mar 1;72(5):1157-69. (PMID: 22237624)
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18250-5. (PMID: 24145436)
PLoS One. 2014 Jun 09;9(6):e99542. (PMID: 24911362)
Virology. 1998 Dec 20;252(2):304-12. (PMID: 9878608)
Mol Cell Biol. 2003 Jan;23(2):655-64. (PMID: 12509463)
J Virol. 2019 Feb 19;93(5):. (PMID: 30541837)
Virology. 2006 Aug 1;351(2):393-403. (PMID: 16701788)
Nature. 1999 Apr 8;398(6727):518-22. (PMID: 10206645)
Genes Dev. 2007 Jun 1;21(11):1322-7. (PMID: 17545467)
J Neurosci. 2010 Aug 4;30(31):10484-92. (PMID: 20685991)
Annu Rev Pathol. 2017 Jan 24;12:245-275. (PMID: 27959635)
J Biol Chem. 2002 Dec 27;277(52):50612-20. (PMID: 12386158)
Cells. 2020 Oct 15;9(10):. (PMID: 33076453)
Curr Biol. 1998 Mar 26;8(7):377-85. (PMID: 9545195)
Dev Biol. 1999 Sep 1;213(1):33-53. (PMID: 10452845)
Cell. 2006 Mar 10;124(5):973-83. (PMID: 16530044)
Blood Cancer J. 2012 May;2(5):e73. (PMID: 22829975)
Adv Exp Med Biol. 2018;1045:321-355. (PMID: 29896674)
J Biol Chem. 2006 Feb 24;281(8):5106-19. (PMID: 16365048)
J Virol. 2005 Sep;79(17):10952-67. (PMID: 16103147)
J Biol Chem. 1994 Feb 18;269(7):5150-6. (PMID: 7906273)
Cancer Cell. 2012 Oct 16;22(4):494-505. (PMID: 23079659)
J Virol. 2011 Mar;85(5):1943-57. (PMID: 21159864)
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2103-8. (PMID: 17284587)
J Tissue Eng Regen Med. 2018 Feb;12(2):304-315. (PMID: 28482141)
J Virol Methods. 2017 Sep;247:99-106. (PMID: 28602767)
Sci Rep. 2015 Nov 13;5:16449. (PMID: 26563570)
J Virol. 2012 Sep;86(18):9683-95. (PMID: 22740392)
Sci Signal. 2017 May 02;10(477):. (PMID: 28465412)
J Virol. 2004 Jun;78(12):6585-94. (PMID: 15163750)
J Biol Chem. 2019 Aug 30;294(35):13073-13092. (PMID: 31308175)
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):705-10. (PMID: 24374627)
Dev Cell. 2010 Mar 16;18(3):359-70. (PMID: 20230745)
PLoS Pathog. 2013;9(5):e1003336. (PMID: 23696732)
PLoS Pathog. 2024 Apr 16;20(4):e1012141. (PMID: 38626263)
Development. 2005 Aug;132(15):3333-44. (PMID: 15975935)
J Virol. 2001 Aug;75(15):6786-99. (PMID: 11435557)
Cell Rep. 2018 Jan 23;22(4):992-1002. (PMID: 29386140)
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7356-61. (PMID: 22529374)
Adv Exp Med Biol. 2021;1287:9-30. (PMID: 33034023)
J Virol. 2000 Jul;74(13):6207-12. (PMID: 10846108)
Circ Cardiovasc Genet. 2015 Aug;8(4):572-581. (PMID: 25963545)
Oncogene. 2005 Sep 22;24(42):6333-44. (PMID: 15940249)
J Virol. 2004 Jul;78(13):6818-26. (PMID: 15194757)
Development. 2015 Jul 15;142(14):2452-63. (PMID: 26062937)
J Virol. 2019 Mar 5;93(6):. (PMID: 30567992)
J Exp Med. 2012 Aug 27;209(9):1537-51. (PMID: 22891273)
Sci Rep. 2017 Mar 23;7(1):329. (PMID: 28336944)
J Biol Chem. 2012 Oct 12;287(42):34904-34916. (PMID: 22915591)
J Virol. 2009 Jul;83(13):6727-38. (PMID: 19369342)
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16287-92. (PMID: 17909182)
J Virol. 2007 Jun;81(11):5788-806. (PMID: 17392367)
J Virol. 2003 Apr;77(7):4205-20. (PMID: 12634378)
Virology. 2009 Apr 10;386(2):290-302. (PMID: 19233445)
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10866-71. (PMID: 9724796)
Development. 1999 Sep;126(17):3925-35. (PMID: 10433920)
J Clin Invest. 2008 Sep;118(9):3181-94. (PMID: 18677410)
Blood. 2010 Jan 28;115(4):887-95. (PMID: 19965636)
J Virol. 2007 Feb;81(3):1062-71. (PMID: 17108026)
Cancer Res. 2014 Oct 1;74(19):5572-84. (PMID: 25125655)
J Virol. 2000 Apr;74(8):3586-97. (PMID: 10729134)
J Virol. 2018 Jul 31;92(16):. (PMID: 29899086)
Biochim Biophys Acta. 2014 Jul;1843(7):1272-84. (PMID: 24667410)
Nat Rev Mol Cell Biol. 2016 Nov;17(11):722-735. (PMID: 27507209)
Clin Genet. 2019 Jan;95(1):85-94. (PMID: 29767458)
Virology. 2007 Mar 1;359(1):19-27. (PMID: 17055026)
Dev Biol. 2009 Aug 1;332(1):166-76. (PMID: 19481073)
Pathogens. 2017 Mar 19;6(1):. (PMID: 28335496)
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14902-7. (PMID: 21746931)
Genes Dev. 2002 Aug 1;16(15):1977-89. (PMID: 12154127)
J Virol. 2001 Apr;75(7):3129-40. (PMID: 11238840)
J Virol. 2010 Feb;84(3):1334-47. (PMID: 19906914)
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4946-53. (PMID: 25369933)
Physiol Genomics. 2009 Jan 8;36(2):69-78. (PMID: 18984672)
PLoS One. 2017 Oct 12;12(10):e0185762. (PMID: 29023469)
PLoS Pathog. 2016 Oct 19;12(10):e1005900. (PMID: 27760204)
J Virol. 2005 Nov;79(22):14371-82. (PMID: 16254371)
Mech Dev. 2001 Jun;104(1-2):3-20. (PMID: 11404076)
J Virol. 2007 Aug;81(16):8451-67. (PMID: 17537858)
Physiol Rev. 2017 Oct 1;97(4):1235-1294. (PMID: 28794168)
J Cell Sci. 2013 May 15;126(Pt 10):2135-40. (PMID: 23729744)
J Virol. 2005 Mar;79(6):3479-87. (PMID: 15731242)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Virology. 2010 Mar 1;398(1):38-48. (PMID: 20006367)
Annu Rev Biophys. 2021 May 6;50:157-189. (PMID: 33534608)
Int J Mol Sci. 2022 Jun 02;23(11):. (PMID: 35682918)
معلومات مُعتمدة: R21 AI117127 United States AI NIAID NIH HHS; R21 AI150230 United States AI NIAID NIH HHS; AI117127 HHS | National Institutes of Health (NIH); AI150230 HHS | National Institutes of Health (NIH)
فهرسة مساهمة: Keywords: HHV-8; KSHV; Rta; notch; protein/DNA interactions; reactivation; transactivation; virus replication
المشرفين على المادة: 0 (Rta protein, Human herpesvirus 8)
0 (Trans-Activators)
0 (Receptor, Notch1)
0 (Immunoglobulin J Recombination Signal Sequence-Binding Protein)
0 (Immediate-Early Proteins)
0 (NOTCH1 protein, human)
0 (RBPJ protein, human)
0 (Transcription Factors)
0 (MAML1 protein, human)
0 (Nuclear Proteins)
0 (DNA-Binding Proteins)
تواريخ الأحداث: Date Created: 20240708 Date Completed: 20240820 Latest Revision: 20240822
رمز التحديث: 20240822
مُعرف محوري في PubMed: PMC11334469
DOI: 10.1128/jvi.00788-24
PMID: 38975769
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-5514
DOI:10.1128/jvi.00788-24