دورية أكاديمية

The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: Extending beyond cardiovascular disorders.

التفاصيل البيبلوغرافية
العنوان: The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: Extending beyond cardiovascular disorders.
المؤلفون: Cavalu S; Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania., Saber S; Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt., Amer AE; Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt., Hamad RS; Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.; Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt., Abdel-Reheim MA; Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia.; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt., Elmorsy EA; Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia.; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt., Abdelhamid AM; Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2024 Jul 15; Vol. 38 (13), pp. e23813.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: Adrenergic beta-Antagonists*/therapeutic use , Adrenergic beta-Antagonists*/pharmacology , Neoplasms*/drug therapy , Neoplasms*/pathology , Drug Resistance, Neoplasm*, Humans ; Animals ; Cardiovascular Diseases/drug therapy ; Disease Progression ; Receptors, Adrenergic, beta/metabolism ; Antineoplastic Agents/therapeutic use ; Antineoplastic Agents/pharmacology
مستخلص: Beta-blockers are commonly used medications that antagonize β-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.
(© 2024 The Author(s). The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.)
References: Oliver E, Mayor F Jr, D'Ocon P. Beta‐blockers: historical perspective and mechanisms of action. Rev Esp Cardiol (Engl Ed). 2019;72:853‐862.
Mancia G, Kjeldsen SE, Kreutz R, Pathak A, Grassi G, Esler M. Individualized beta‐blocker treatment for high blood pressure dictated by medical comorbidities: indications beyond the 2018 European Society of Cardiology/European Society of Hypertension Guidelines. Hypertension. 2022;79:1153‐1166.
Wisler JW, DeWire SM, Whalen EJ, et al. A unique mechanism of beta‐blocker action: carvedilol stimulates beta‐arrestin signaling. Proc Natl Acad Sci USA. 2007;104:16657‐16662.
Wang DW, Mistry AM, Kahlig KM, Kearney JA, Xiang J, George AL. Propranolol blocks cardiac and neuronal voltage‐gated sodium channels. Front Pharmacol. 2010;1:144.
Kowaluk B, Khaper N, Rigatto C, Palace V, Singal PK. Mechanisms of cardioprotective effects of propranolol against reperfusion injury. In: Mochizuki S, Takeda N, Nagano M, Dhalla NS, eds. The Ischemic Heart. Springer US; 1998:367‐377.
Feuerstein GZ, Ruffolo RR Jr. Carvedilol, a novel multiple action antihypertensive agent with antioxidant activity and the potential for myocardial and vascular protection. Eur Heart J. 1995;16 Suppl F:38‐42.
Tilley DG, Kim IM, Patel PA, Violin JD, Rockman HA. beta‐Arrestin mediates beta1‐adrenergic receptor‐epidermal growth factor receptor interaction and downstream signaling. J Biol Chem. 2009;284:20375‐20386.
Kim IM, Tilley DG, Chen J, et al. Beta‐blockers alprenolol and carvedilol stimulate beta‐arrestin‐mediated EGFR transactivation. Proc Natl Acad Sci USA. 2008;105:14555‐14560.
Cole SW, Sood AK. Molecular pathways: beta‐adrenergic signaling in cancer. Clin Cancer Res. 2012;18:1201‐1206.
Heel RC, Brogden RN, Pakes GE, Speight TM, Avery GS. Nadolol: a review of its pharmacological properties and therapeutic efficacy in hypertension and angina pectoris. Drugs. 1980;20:1‐23.
İşeri ÖD, Sahin FI, Terzi YK, Yurtcu E, Erdem SR, Sarialioglu F. beta‐Adrenoreceptor antagonists reduce cancer cell proliferation, invasion, and migration. Pharm Biol. 2014;52:1374‐1381.
Peixoto R, Pereira MDL, Oliveira M. Beta‐blockers and cancer: where are we? Pharmaceuticals (Basel). 2020;13:105.
Caparica R, Bruzzone M, Agostinetto E, et al. Beta‐blockers in early‐stage breast cancer: a systematic review and meta‐analysis. ESMO Open. 2021;6:100066.
Barron TI, Sharp L, Visvanathan K. Beta‐adrenergic blocking drugs in breast cancer: a perspective review. Ther Adv Med Oncol. 2012;4:113‐125.
Løfling LL, Støer NC, Sloan EK, et al. β‐Blockers and breast cancer survival by molecular subtypes: a population‐based cohort study and meta‐analysis. Br J Cancer. 2022;127:1086‐1096.
Fjæstad KY, Rømer AMA, Goitea V, et al. Blockade of beta‐adrenergic receptors reduces cancer growth and enhances the response to anti‐CTLA4 therapy by modulating the tumor microenvironment. Oncogene. 2022;41:1364‐1375.
Hanley GE, Kaur P, Berchuck A, et al. Cardiovascular medications and survival in people with ovarian cancer: a population‐based cohort study from British Columbia, Canada. Gynecol Oncol. 2021;162:461‐468.
Baek MH, Kim DY, Kim SO, Kim YJ, Park YH. Impact of beta blockers on survival outcomes in ovarian cancer: a nationwide population‐based cohort study. J Gynecol Oncol. 2018;29:e82.
Couttenier A, Lacroix O, Silversmit G, Vaes E, De Schutter H, Robert A. Beta‐blocker use and mortality following ovarian cancer diagnosis: a population‐based study. Cancer Epidemiol. 2019;62:101579.
Nagaraja AS, Sadaoui NC, Lutgendorf SK, Ramondetta LM, Sood AK. β‐Blockers: a new role in cancer chemotherapy? Expert Opin Investig Drugs. 2013;22:1359‐1363.
Daly CJ, McGrath JC. Previously unsuspected widespread cellular and tissue distribution of β‐adrenoceptors and its relevance to drug action. Trends Pharmacol Sci. 2011;32:219‐226.
Baker JG, Hill SJ, Summers RJ. Evolution of β‐blockers: from anti‐anginal drugs to ligand‐directed signalling. Trends Pharmacol Sci. 2011;32:227‐234.
Benovic JL. Novel beta2‐adrenergic receptor signaling pathways. J Allergy Clin Immunol. 2002;110:S229‐S235.
Lin A, DeFea KA. β‐Arrestin‐kinase scaffolds: turn them on or turn them off? Wiley Interdiscip Rev Syst Biol Med. 2013;5:231‐241.
Shenoy SK, Drake MT, Nelson CD, et al. Beta‐arrestin‐dependent, G protein‐independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem. 2006;281:1261‐1273.
Kim K, Han Y, Duan L, Chung KY. Scaffolding of mitogen‐activated protein kinase signaling by β‐Arrestins. Int J Mol Sci. 2022;23:1000.
Jean‐Charles PY, Kaur S, Shenoy SK. G protein‐coupled receptor signaling through β‐Arrestin‐dependent mechanisms. J Cardiovasc Pharmacol. 2017;70:142‐158.
Song Q, Ji Q, Li Q. The role and mechanism of β‐arrestins in cancer invasion and metastasis (review). Int J Mol Med. 2018;41:631‐639.
Nilsson MB, Le X, Heymach JV. β‐Adrenergic signaling in lung cancer: a potential role for Beta‐blockers. J Neuroimmune Pharmacol. 2020;15:27‐36.
Braadland P, Ramberg H, Grytli H, Taskén K. β‐Adrenergic receptor signaling in prostate cancer. Front Oncol. 2015;4:375.
Bruno G, Cencetti F, Pini A, et al. β3‐adrenoreceptor blockade reduces tumor growth and increases neuronal differentiation in neuroblastoma via SK2/S1P(2) modulation. Oncogene. 2020;39:368‐384.
Calvani M, Subbiani A, Vignoli M, Favre C. Spotlight on ROS and β3‐adrenoreceptors fighting in cancer cells. Oxidative Med Cell Longev. 2019;2019:6346529.
Bruno G, Nastasi N, Subbiani A, et al. β3‐adrenergic receptor on tumor‐infiltrating lymphocytes sustains IFN‐γ‐dependent PD‐L1 expression and impairs anti‐tumor immunity in neuroblastoma. Cancer Gene Ther. 2023;30:890‐904.
Bruno G, De Logu F, Souza Monteiro de Araujo D, et al. β2‐and β3‐adrenergic receptors contribute to cancer‐evoked pain in a mouse model of osteosarcoma via modulation of neural macrophages. Front Pharmacol. 2021;12:697912.
Ouyang X, Zhu Z, Yang C, Wang L, Ding G, Jiang F. Epinephrine increases malignancy of breast cancer through p38 MAPK signaling pathway in depressive disorders. Int J Clin Exp Pathol. 2019;12:1932‐1946.
Xie WY, He RH, Zhang J, et al. β‐Blockers inhibit the viability of breast cancer cells by regulating the ERK/COX‐2 signaling pathway and the drug response is affected by ADRB2 single‐nucleotide polymorphisms. Oncol Rep. 2019;41:341‐350.
Gillis RD, Botteri E, Chang A, et al. Carvedilol blocks neural regulation of breast cancer progression in vivo and is associated with reduced breast cancer mortality in patients. Eur J Cancer. 2021;147:106‐116.
Huang KM, Liang S, Yeung S, et al. Topically applied carvedilol attenuates solar ultraviolet radiation induced skin carcinogenesis. Cancer Prev Res. 2017;10:598‐606.
Brohée L, Peulen O, Nusgens B, et al. Propranolol sensitizes prostate cancer cells to glucose metabolism inhibition and prevents cancer progression. Sci Rep. 2018;8:7050.
Hajighasemi F. Inhibition of matrix metalloproteinase‐2 activity by propranolol in immunocompetent cells. Eur Respiratory Soc. 2013;42:P3151.
Zhao S, Fan S, Shi Y, et al. Propranolol induced apoptosis and autophagy via the ROS/JNK signaling pathway in human ovarian cancer. J Cancer. 2020;11:5900‐5910.
Özler S, Pazarci P. Anti‐tumoral effect of beta‐blockers on prostate and bladder cancer cells via mitogen‐activated protein kinase pathways. Anti‐Cancer Drugs. 2022;33:384‐388.
Saha J, Kim JH, Amaya CN, et al. Propranolol sensitizes vascular sarcoma cells to doxorubicin by altering lysosomal drug sequestration and drug efflux. Front Oncol. 2020;10:614288.
Puzderova B, Belvoncikova P, Grossmannova K, et al. Propranolol, promising chemosensitizer and candidate for the combined therapy through disruption of tumor microenvironment homeostasis by decreasing the level of carbonic anhydrase IX. Int J Mol Sci. 2023;24:11094.
Shibuya CM, Tjioe KC, Oliveira SHP, Bernabé DG. Propranolol inhibits cell viability and expression of the pro‐tumorigenic proteins Akt, NF‐ĸB, and VEGF in oral squamous cell carcinoma. Arch Oral Biol. 2022;136:105383.
Pon CK, Lane JR, Sloan EK, Halls ML. The β2‐adrenoceptor activates a positive cAMP‐calcium feedforward loop to drive breast cancer cell invasion. FASEB J. 2016;30:1144‐1154.
Chang A, Le CP, Walker AK, et al. β2‐Adrenoceptors on tumor cells play a critical role in stress‐enhanced metastasis in a mouse model of breast cancer. Brain Behav Immun. 2016;57:106‐115.
Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70:7042‐7052.
Powe DG, Voss MJ, Zänker KS, et al. Beta‐blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget. 2010;1:628‐638.
Pantziarka P, Bryan BA, Crispino S, Dickerson EB. Propranolol and breast cancer‐a work in progress. Ecancermedicalscience. 2018;12:ed82.
Ramondetta LM, Hu W, Thaker PH, et al. Prospective pilot trial with combination of propranolol with chemotherapy in patients with epithelial ovarian cancer and evaluation on circulating immune cell gene expression. Gynecol Oncol. 2019;154:524‐530.
Chang PY, Huang WY, Lin CL, et al. Propranolol reduces cancer risk: a population‐based cohort study. Medicine. 2015;94:e1097.
Brohée L, Demine S, Willems J, Arnould T, Colige AC, Deroanne CF. Lipin‐1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264‐11280.
Nuevo‐Tapioles C, Santacatterina F, Stamatakis K, et al. Coordinate β‐adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth. Nat Commun. 2020;11:3606.
Ji Y, Chen S, Xiao X, Zheng S, Li K. β‐Blockers: a novel class of antitumor agents. Onco Targets Ther. 2012;5:391‐401.
Lopes‐Coelho F, Martins F, Pereira SA, Serpa J. Anti‐Angiogenic therapy: current challenges and future perspectives. Int J Mol Sci. 2021;22:3765.
Zhang L, Mai HM, Zheng J, et al. Propranolol inhibits angiogenesis via down‐regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell. Int J Clin Exp Pathol. 2014;7:48‐55.
Coelho M, Soares‐Silva C, Brandão D, Marino F, Cosentino M, Ribeiro L. β‐Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol. 2017;143:275‐291.
Abd El‐Fattah EE, Saber S, Youssef ME, et al. AKT‐AMPKα‐mTOR‐dependent HIF‐1α activation is a new therapeutic target for cancer treatment: a novel approach to repositioning the antidiabetic drug Sitagliptin for the management of hepatocellular carcinoma. Front Pharmacol. 2022;12:720173.
Saber S, El‐Fattah EEA, Abdelhamid AM, et al. Innovative challenge for the inhibition of hepatocellular carcinoma progression by combined targeting of HSP90 and STAT3/HIF‐1α signaling. Biomed Pharmacother. 2023;158:114196.
Porcelli L, Garofoli M, Di Fonte R, et al. The β‐adrenergic receptor antagonist propranolol offsets resistance mechanisms to chemotherapeutics in diverse sarcoma subtypes: a pilot study. Sci Rep. 2020;10:10465.
Li D, Li P, Guo Z, Wang H, Pan W. Downregulation of miR‐382 by propranolol inhibits the progression of infantile hemangioma via the PTEN‐mediated AKT/mTOR pathway. Int J Mol Med. 2017;39:757‐763.
Saber S, Mahmoud A, Helal N, El‐Ahwany E, Abdelghany R. Liver protective effects of renin‐angiotensin system inhibition have No survival benefits in hepatocellular carcinoma induced by repetitive administration of diethylnitrosamine in mice. Open Access Maced J Med Sci. 2018;6:955‐960.
Saber S. Angiotensin II: a key mediator in the development of liver fibrosis and cancer. Bull Natl Res Cent. 2018;42:18.
Abdelhamid AM, Youssef ME, Abd El‐Fattah EE, et al. Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK‐induced NF‐κB inactivation in mice intoxicated with carbon tetrachloride. Life Sci. 2021;286:120070.
Yahya G, Ebada A, Khalaf EM, et al. Soil‐associated bacillus species: a reservoir of bioactive compounds with potential therapeutic activity against human pathogens. Microorganisms. 2021;9:1131.
Saber S, Yahya G, Gobba NA, et al. The supportive role of NSC328382, a P2X7R antagonist, in enhancing the inhibitory effect of CRID3 on NLRP3 inflammasome activation in rats with dextran sodium sulfate‐induced colitis. J Inflamm Res. 2021;14:3443‐3463.
Nasr M, Cavalu S, Saber S, et al. Canagliflozin‐loaded chitosan‐hyaluronic acid microspheres modulate AMPK/NF‐κB/NLRP3 axis: a new paradigm in the rectal therapy of ulcerative colitis. Biomed Pharmacother. 2022;153:113409.
Szewczyk M, Richter C, Briese V, Richter D‐U. A retrospective in vitro study of the impact of anti‐diabetics and cardioselective pharmaceuticals on breast cancer. Anticancer Res. 2012;32:2133‐2138.
Lu H, Liu X, Guo F, et al. Impact of beta‐blockers on prostate cancer mortality: a meta‐analysis of 16,825 patients. Onco Targets Ther. 2015;8:985‐990.
Sivanesan S, Taskén KA, Grytli HH. Association of β‐blocker use at time of radical prostatectomy with rate of treatment for prostate cancer recurrence. JAMA Netw Open. 2022;5:e2145230.
Watkins JL, Thaker PH, Nick AM, et al. Clinical impact of selective and nonselective beta‐blockers on survival in patients with ovarian cancer. Cancer. 2015;121:3444‐3451.
Chang CH, Lee CH, Ko JC, et al. Effect of β‐blocker in treatment‐Naïve patients with advanced lung adenocarcinoma receiving first‐generation EGFR‐TKIs. Front Oncol. 2020;10:583529.
Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K. Beta blockers and breast cancer mortality: a population‐ based study. J Clin Oncol. 2011;29:2635‐2644.
Chen HY, Zhao W, Na'ara S, et al. Beta‐blocker use is associated with worse relapse‐free survival in patients with head and neck cancer. JCO Precis Oncol. 2023;7:e2200490.
Spera G, Fresco R, Fung H, et al. Beta blockers and improved progression‐free survival in patients with advanced HER2 negative breast cancer: a retrospective analysis of the ROSE/TRIO‐012 study. Ann Oncol. 2017;28:1836‐1841.
Melhem‐Bertrandt A, Chavez‐Macgregor M, Lei X, et al. Beta‐blocker use is associated with improved relapse‐free survival in patients with triple‐negative breast cancer. J Clin Oncol. 2011;29:2645‐2652.
Childers WK, Hollenbeak CS, Cheriyath P. β‐Blockers reduce breast cancer recurrence and breast cancer death: a meta‐analysis. Clin Breast Cancer. 2015;15:426‐431.
Grytli HH, Fagerland MW, Fosså SD, Taskén KA. Association between use of β‐blockers and prostate cancer‐specific survival: a cohort study of 3561 prostate cancer patients with high‐risk or metastatic disease. Eur Urol. 2014;65:635‐641.
Johannesdottir SA, Schmidt M, Phillips G, et al. Use of ß‐blockers and mortality following ovarian cancer diagnosis: a population‐based cohort study. BMC Cancer. 2013;13:85.
Liao X, Che X, Zhao W, et al. Effects of propranolol in combination with radiation on apoptosis and survival of gastric cancer cells in vitro. Radiat Oncol. 2010;5:98.
Rossi M, Talbot J, Piris P, et al. Beta‐blockers disrupt mitochondrial bioenergetics and increase radiotherapy efficacy independently of beta‐adrenergic receptors in medulloblastoma. EBioMedicine. 2022;82:104149.
Chaudhary KR, Yan SX, Heilbroner SP, et al. Effects of β‐adrenergic antagonists on chemoradiation therapy for locally advanced non‐small cell lung cancer. J Clin Med. 2019;8:575.
Wang HM, Liao ZX, Komaki R, et al. Improved survival outcomes with the incidental use of beta‐blockers among patients with non‐small‐cell lung cancer treated with definitive radiation therapy. Ann Oncol. 2013;24:1312‐1319.
Pintea B, Kinfe TM, Baumert BG, Boström J. Earlier and sustained response with incidental use of cardiovascular drugs among patients with low‐ to medium‐grade meningiomas treated with radiosurgery (SRS) or stereotactic radiotherapy (SRT). Radiother Oncol. 2014;111:446‐450.
Farrugia MK, Ma SJ, Mattson DM, Flaherty L, Repasky EA, Singh AK. Concurrent β‐blocker use is associated with improved outcome in esophageal cancer patients who undergo chemoradiation: a retrospective matched‐pair analysis. Am J Clin Oncol. 2020;43:889‐894.
Kokolus KM, Zhang Y, Sivik JM, et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Onco Targets Ther. 2018;7:e1405205.
Oh MS, Guzner A, Wainwright DA, et al. The impact of beta blockers on survival outcomes in patients with non‐small‐cell lung cancer treated with immune checkpoint inhibitors. Clin Lung Cancer. 2021;22:e57‐e62.
Kennedy OJ, Kicinski M, Valpione S, et al. Prognostic and predictive value of β‐blockers in the EORTC 1325/KEYNOTE‐054 phase III trial of pembrolizumab versus placebo in resected high‐risk stage III melanoma. Eur J Cancer. 2022;165:97‐112.
Pérez‐Sayáns M, Somoza‐Martín JM, Barros‐Angueira F, Diz PG, Gándara Rey JM, García‐García A. Beta‐adrenergic receptors in cancer: therapeutic implications. Oncol Res. 2010;19:45‐54.
Fischer A, Ben‐Eliyahu S. Perioperative stress, inflammation, and cancer progression:opportunities for intervention in breast and colorectal cancer surgery UtilizingBeta‐adrenergic blockade and COX‐2 inhibition. Curr Anesthesiol Rep. 2018;8:386‐392.
Bockaert J, Pin JP. Molecular tinkering of G protein‐coupled receptors: an evolutionary success. EMBO J. 1999;18:1723‐1729.
Vilardaga JP, Bünemann M, Feinstein TN, et al. GPCR and G proteins: drug efficacy and activation in live cells. Mol Endocrinol. 2009;23:590‐599.
Arang N, Gutkind JS. G protein‐coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett. 2020;594:4201‐4232.
Zhang X, Odom DT, Koo SH, et al. Genome‐wide analysis of cAMP‐response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA. 2005;102:4459‐4464.
Cannavo A, Koch WJ. Targeting β3‐adrenergic receptors in the heart: selective agonism and β‐blockade. J Cardiovasc Pharmacol. 2017;69:71‐78.
Michel LYM, Farah C, Balligand J‐L. The Beta3 adrenergic receptor in healthy and pathological cardiovascular tissues. Cells. 2020;9:2584.
Zhao Y, Li W. Beta‐adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression. Asian J Androl. 2019;21:253‐259.
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11:933‐959.
Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P. The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities. Cancers (Basel). 2021;13:2053.
Jin M‐Z, Jin W‐L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5:166.
Tang J, Li Z, Lu L, Cho CH. β‐Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol. 2013;23:533‐542.
Qiao G, Bucsek MJ, Winder NM, et al. β‐Adrenergic signaling blocks murine CD8(+) T‐cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68:11‐22.
Mourad AAE, Khodir AE, Saber S, Mourad MAE. Novel potent and selective DPP‐4 inhibitors: design, synthesis and molecular docking study of dihydropyrimidine phthalimide hybrids. Pharmaceuticals (Basel). 2021;14:144.
Saber S, Hasan AM, Mohammed OA, et al. Ganetespib (STA‐9090) augments sorafenib efficacy via necroptosis induction in hepatocellular carcinoma: implications from preclinical data for a novel therapeutic approach. Biomed Pharmacother. 2023;164:114918.
Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest. 2019;129:442‐451.
Wang JC, Li GY, Li PP, et al. Suppression of hypoxia‐induced excessive angiogenesis by metformin via elevating tumor blood perfusion. Oncotarget. 2017;8:73892‐73904.
Jansen L, Weberpals J, Kuiper JG, et al. Pre‐ and post‐diagnostic beta‐blocker use and prognosis after colorectal cancer: results from a population‐based study. Int J Cancer. 2017;141:62‐71.
Sørensen GV, Ganz PA, Cole SW, et al. Use of β‐blockers, angiotensin‐converting enzyme inhibitors, angiotensin II receptor blockers, and risk of breast cancer recurrence: a Danish nationwide prospective cohort study. J Clin Oncol. 2013;31:2265‐2272.
Zhou H‐M, Zhang J‐G, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther. 2021;6:62.
Banerjee J, Papu John AM, Schuller HM. Regulation of nonsmall‐cell lung cancer stem cell like cells by neurotransmitters and opioid peptides. Int J Cancer. 2015;137:2815‐2824.
Singh S, Chellappan S. Lung cancer stem cells: molecular features and therapeutic targets. Mol Asp Med. 2014;39:50‐60.
Zhang S, Wang Y, Mao JH, et al. Inhibition of CK2α down‐regulates hedgehog/Gli signaling leading to a reduction of a stem‐like side population in human lung cancer cells. PLoS One. 2012;7:e38996.
Shao C, Sullivan JP, Girard L, et al. Essential role of aldehyde dehydrogenase 1A3 for the maintenance of non‐small cell lung cancer stem cells is associated with the STAT3 pathway. Clin Cancer Res. 2014;20:4154‐4166.
Hassan KA, Wang L, Korkaya H, et al. Notch pathway activity identifies cells with cancer stem cell‐like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 2013;19:1972‐1980.
Koh M, Takahashi T, Kurokawa Y, et al. Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis. Gastric Cancer. 2021;24:1037‐1049.
Kavakcıoğlu Yardımcı B, Geyikoglu F, Aysin F, Koc K, Simsek Ozek N, Küçükatay V. The cytotoxic and apoptotic effects of beta‐blockers with different selectivity on cancerous and healthy lung cell lines. Mol Biol Rep. 2021;48:4009‐4019.
Jan R, Chaudhry GE. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9:205‐218.
Balaji S, Terrero D, Tiwari AK, Ashby CR Jr, Raman D. Alternative approaches to overcome chemoresistance to apoptosis in cancer. Adv Protein Chem Struct Biol. 2021;126:91‐122.
Igney FH, Krammer PH. Death and anti‐death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2:277‐288.
معلومات مُعتمدة: GrantA331 Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia
فهرسة مساهمة: Keywords: angiogenesis; apoptosis; beta‐blockers; cancer; drug resistance; metastasis
المشرفين على المادة: 0 (Adrenergic beta-Antagonists)
0 (Receptors, Adrenergic, beta)
0 (Antineoplastic Agents)
تواريخ الأحداث: Date Created: 20240708 Date Completed: 20240708 Latest Revision: 20240708
رمز التحديث: 20240708
DOI: 10.1096/fj.202400725RR
PMID: 38976162
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-6860
DOI:10.1096/fj.202400725RR