دورية أكاديمية

The expression of intermediate filaments in the abomasum of ruminants: A comparative study.

التفاصيل البيبلوغرافية
العنوان: The expression of intermediate filaments in the abomasum of ruminants: A comparative study.
المؤلفون: Aydın N; Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey., Ketani MA; Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey., Sağsöz H; Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey.
المصدر: Anatomia, histologia, embryologia [Anat Histol Embryol] 2024 Jul; Vol. 53 (4), pp. e13088.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: Germany NLM ID: 7704218 Publication Model: Print Cited Medium: Internet ISSN: 1439-0264 (Electronic) Linking ISSN: 03402096 NLM ISO Abbreviation: Anat Histol Embryol Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Wiley-Blackwell
Original Publication: Berlin, Parey.
مواضيع طبية MeSH: Abomasum*/metabolism , Intermediate Filaments*/metabolism , Goats* , Nestin*/metabolism , Laminin*/metabolism , Immunohistochemistry*/veterinary, Animals ; Cattle ; Sheep ; Vimentin/metabolism ; Desmin/metabolism ; Peripherins/metabolism
مستخلص: Intermediate filaments (IFs) are key molecular factors of the cell and have been reported to play an important role in maintaining the structural integrity and functionality of the abomasum. This study was designed to determine the regional distribution, cellular localization and expression of several IFs, including CK8, CK18, CK19, vimentin, desmin, peripherin and nestin, as well as the connective tissue component laminin, in the bovine, ovine and caprine abomasa. Immunohistochemical analyses demonstrated varying levels of expression of CK8, CK18, CK19, vimentin, desmin, nestin, peripherin and laminin in the bovine, ovine and caprine abomasa. CK8 immunoreactions were particularly evident in the luminal and glandular epithelia of the glands found in the abomasal cardia, fundus and pylorus in all three species. In the bovine abomasum, CK18 immunoreactions were stronger in the parietal cells, compared to the chief cells. In the abomasum of all three species, the smooth muscle as well as the smooth muscle cells of the vascular media in the cardiac, fundic and pyloric regions showed strong immunoreactivity. In all three species, the cardiac, fundic and pyloric regions of the abomasum showed strong peripherin and nestin immunoreactions in the luminal and glandular epithelial cells, stromal and smooth muscle cells, nervous plexuses and blood vessels. The expression patterns of IFs and laminin in the ruminant abomasum suggest that these proteins play a structural role in the cytoskeleton and are effective in maintaining abomasal tissue integrity and stability.
(© 2024 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.)
References: Agnetti, G., Herrmann, H., & Cohen, S. (2022). New roles for desmin in the maintenance of muscle homeostasis. The FEBS Journal, 289, 2755–2770. https://doi.org/10.1111/febs.15864.
Albers, K., & Fuchs, E. (1992). The molecular biology of intermediate filament proteins. International Review of Cytology, 134, 243–279. https://doi.org/10.1016/S0074‐7696(08)62030‐6.
Aupperle, H., Schoon, D., & Schoon, H. A. (2004). Physiological and pathological expression of intermediate filaments in the equine endometrium. Research in Veterinary Science, 76, 249–255. https://doi.org/10.1016/j.rvsc.2003.11.003.
Barraza‐flores, P., Bates, C. R., Oliveira‐santos, A., & Burkin, D. J. (2020). Laminin and integrin in LAMA2‐related congenital muscular dystrophy : From disease to therapeutics. Frontiers in Molecular Neuroscience, 13, 1–9. https://doi.org/10.3389/fnmol.2020.00001.
Beyaz, F., Bayram, G., & Alan, E. (2009). The Immunohistochemical expression of vimentin cytokeratin, α‐SMA and desmin in New Zealand rabbit testis and epididiymis. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 6(2), 111–119.
Boch, J. A., Shields, H. M., Antonioli, D. A., Zwas, F., Sawhney, R. A., & Trier, J. S. (1997). Distribution of cytokeratin markers in Barrett's specialized columnar epithelium. Gastroenterology, 112(3), 760–765. https://doi.org/10.1053/gast.1997.v112.pm9041237.
Çelenk, F. (2022). İnek ve Koyun Dilinde İntermediyer Filamanlardan Sitokeratin. Dicle Üniversitesi.
Çelenk, F., Güney Saruhan, B., Akbalık, M. E., Topaloğlu, U., Aydın, N., & Bayram, B. (2021). Immunohistochemical distribution of Vimentin in the testis and epididymal duct unit of adult bulls and rams. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 14(2), 83–88. https://doi.org/10.47027/duvetfd.913722.
Chen, Z., Fang, Z., & Ma, J. (2021). Regulatory mechanisms and clinical significance of Vimentin in breast cancer. Biomedicine & Pharmacotherapy, 133(111068), 1–5. https://doi.org/10.1016/j.biopha.2020.111068.
Cholewińska, P., Górniak, W., & Wojnarowski, K. (2021). Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC Veterinary Research, 17(25), 1–10. https://doi.org/10.1186/s12917‐021‐02742‐y.
Colognato, H., & Yurchenco, P. D. (2000). Form and function: The Laminin family of Heterotrimers. Developmental Dynamics, 218(2), 213–234. https://doi.org/10.1002/(SICI)1097‐0177(200006)218:2<213::AID‐DVDY1>3.0.CO;2‐R.
Danielsson, F., Peterson, M. K., Araujo, H. C., Lautenschläger, F., & Gad Britt, A. K. (2018). Vimentin diversity in health and disease. Cells, 7(147), 1–38. https://doi.org/10.3390/cells7100147.
Dicle, Ö., Özenci, Ç. Ç., Şahin, P., Altınok, B. N., & Çiftçioğlu, M. A. (2017). Liken Planopilarisde CK15, CD34, Nestin ve CD200 Ekspresyonları. Turk Dermatoloji Dergisi, 11, 70–74. https://doi.org/10.4274/tdd.3225.
Durbeej, M. (2010). Laminins. Cell and Tissue Research, 339, 259–268. https://doi.org/10.1007/s00441‐009‐0838‐2.
Dutour‐Provenzano, G., & Etienne‐Manneville, S. (2021). Intermediate filaments. Current Biology, 31(10), R522–R529. https://doi.org/10.1016/j.cub.2021.04.011.
Fillies, T., Werkmeister, R., Packeisen, J., Brandt, B., Morin, P., Weingart, D., Joos, U., & Buerger, H. (2006). Cytokeratin 8/18 expression indicates a poor prognosis in squamous cell carcinomas of the oral cavity. BMC Cancer, 6(10), 1–8. https://doi.org/10.1186/1471‐2407‐6‐10.
Fuchs, E., & Weber, K. (1994). Intermediate filaments: Structure, dynamics, function and disease. Annual Review of Biochemistry, 63, 345–382. https://doi.org/10.1146/annurev.bi.63.070194.002021.
Gaowa, N., Li, W., Murphy, B., & Cox, M. S. (2021). The effects of artificially dosed adult rumen contents on abomasum transcriptome and associated microbial community structure in calves. Genes, 12(424), 1–14. https://doi.org/10.3390/genes12030424.
Gilyarov, A. V. (2008). Nestin in central nervous system cells. Neuroscience and Behavioral Physiology, 38(2), 165–169. https://doi.org/10.1007/s11055‐008‐0025‐z.
Holland, S. K., Hessler, R. B., Reid‐Nicholson, M. D., Ramalingam, P., & Lee, J. R. (2010). Utilization of peripherin and S‐100 immunohistochemistry in the diagnosis of Hirschsprung disease. Modern Pathology, 23, 1173–1179. https://doi.org/10.1038/modpathol.2010.104.
Jaramillo‐Rangel, G., Chávez‐Briones, M. D. L., Ancer‐Arellano, A., & Ortega‐Martínez, M. (2021). Nestin‐expressing cells in the lung: The bad and the good parts. Cells, 10, 1–16. https://doi.org/10.3390/cells10123413.
Kayman Kürekçi, G., Kural Mangit, E., Koyunlar, C., Unsal, S., Saglam, B., Ergin, B., Gizer, M., Uyanik, I., Boustanabadimaralan Düz, N., Korkusuz, P., Talim, B., Purali, N., Hughes, S. M., & Dincer, P. R. (2021). Knockout of zebrafish desmin genes does not cause skeletal muscle degeneration but alters calcium flux. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598‐021‐86974‐w.
Kim, J. H., Yun, J. H., Song, E. S., Kim, S. U., Lee, H. J., & Song, Y. S. (2021). Improvement of damaged cavernosa followed by neuron‐like differentiation at injured cavernous nerve after transplantation of stem cells seeded on the PLA nanofiber in rats with cavernous nerve injury. Molecular Biology Reports, 48, 3549–3559. https://doi.org/10.1007/s11033‐021‐06332‐x.
Kim, M. A., Lee, H. S., Yang, H., & Kim, W. H. (2004). Cytokeratin expression profile in gastric carcinomas. Human Pathology, 35(5), 576–581. https://doi.org/10.1016/j.humpath.2003.12.007.
Kleinman, H. K., Cannon, F. B., Laurie, G. W., Hassell, J. R., Aumailley, M., Terranova, V. P., Martin, G. R., & Dubois‐dalcq, M. (1985). Biological activities of laminin. Journal of Cellular Biochemistry, 27, 317–325. https://doi.org/10.1002/jcb.240270402.
Kornreich, M., Avinery, R., Malka‐Gibor, E., Laser‐Azogui, A., & Beck, R. (2015). Order and disorder in intermediate filament proteins. FEBS Letters, 589(19), 2464–2476. https://doi.org/10.1016/j.febslet.2015.07.024.
Kuburich, N. A., Den Hollander, P., Pietz, J. T., & Mani, S. A. (2022). Vimentin and cytokeratin: Good alone, bad together. Seminars in Cancer Biology, 86, 816–826. https://doi.org/10.1016/j.semcancer.2021.12.006.
Leoni, P., Carli, F., & Halliday, D. (1990). Intermediate filaments in smooth muscle from pregnant and non‐pregnant human uterus. The Biochemical Journal, 269, 31–34. https://doi.org/10.1042/bj2690031.
Loor, J. J. (2022). Nutrigenomics in livestock: Potential role in physiological regulation and practical applications. Animal Production Science, 62(10–11), 901–912. https://doi.org/10.1071/an21512.
Madekurozwa, M. C. (2013). An Immunohistochemical study of the oviduct in the domestic fowl (Gallus domesticus). Anatomia, Histologia, Embryologia, 42, 48–56. https://doi.org/10.1111/j.1439‐0264.2012.01164.x.
Magin, T. M., Schröder, R., Leitgeb, S., Wanninger, F., Zatloukal, K., Grund, C., & Melton, D. W. (1998). Lessons from keratin 18 knockout mice: Formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver‐specific keratin 8‐positive aggregates. The Journal of Cell Biology, 140(6), 1441–1451. https://doi.org/10.1083/jcb.140.6.1441.
Margiotta, A., & Bucci, C. (2016). Role of intermediate filaments in vesicular traffic. Cells, 5(20), 2–22. https://doi.org/10.3390/cells5020020.
McKee, K. K., Hohenester, E., Aleksandrova, M., & Yurchenco, P. D. (2021). Organization of the laminin polymer node. Matrix Biology, 98, 49–63. https://doi.org/10.1016/j.matbio.2021.05.004.
Mehasseb, M. K., Bell, S. C., & Habiba, M. A. (2009). The effects of tamoxifen and estradiol on myometrial differentiation and organization during early uterine development in the CD1 mouse. Reproduction, 138, 341–350. https://doi.org/10.1530/REP‐09‐0054.
Mercurio, A. M., & Shaw, L. M. (1991). Laminin Binding Proteins. BioEssays, 13(9), 469–473. https://doi.org/10.1002/bies.950130907.
Michalczyk, K., & Ziman, M. (2005). Nestin structure and predicted function in cellular cytoskeletal organisation. Histology and Histopathology, 20(2), 665–671.
Mittal, B. (2020). Desmin dysregulation in gall bladder cancer. The Indian Journal of Medical Research, 151, 273–274. https://doi.org/10.4103/ijmr.IJMR&#95;1540&#95;19.
Mostafa, M., McKellar, Q., & Eckersall, P. (1990). Comparison of pepsinogen forms in cattle, sheep and goats. Research in Veterinary Science, 48, 33–37. https://doi.org/10.1016/S0034‐5288(18)31505‐4.
O'Hara, E., Neves, A., Song, Y., & Guan, L. (2020). The role of the gut microbiome in cattle production and health: Driver or passenger? Annual Review of Animal Biosciences, 8, 199–220. https://doi.org/10.1146/annurev‐animal‐021419‐083952.
Omary, M. B. (2017). Intermediate filament proteins of digestive organs: Physiology and pathophysiology. American Journal of Physiology. Gastrointestinal and Liver Physiology, 312, 628–634. https://doi.org/10.1152/ajpgi.00455.2016.
Özdil, B., Gürel, Ç., Kılıç, K. D., Kuşçu, G. C., Adalı, Y., & Aktuğ, H. (2017). Hücre İçi Trafik ve Hücre Davranış Özellikleri. Ege Journal of Medicine, 56(1), 102–110. https://doi.org/10.19161/etd.344254.
Persson, E., & Rodriguez‐martinez, H. (1997). Immunocytochemical localization of growth factors and intermediate filaments during the establishment of the porcine placenta. Microscopy Research and Technique, 38, 165–175. https://doi.org/10.1002/(SICI)1097‐0029(19970701/15)38:1/2<165::AID‐JEMT17>3.0.CO;2‐N.
Raul, U., Sawant, S., Dange, P., Kalraiya, R., Ingle, A., & Vaidya, M. (2004). Implications of cytokeratin 8/18 filament formation in stratified epithelial cells: Induction of transformed phenotype. International Journal of Cancer, 111, 662–668. https://doi.org/10.1002/ijc.20349.
Rizwan, M., Akbar, H., Anjum, A. A., Khan, M. A., Durrani, A. Z., Hayat, M. A., Masood, A., Sajjad, M. T., & Raza, N. (2022). Effect of pre and post‐surgical correction of left displacement abomasum on oxidative stress, metabolic status and hematological profile changes in serum of dairy cows of Pakistan. Pakistan Journal of Zoology, 55, 1–7. https://doi.org/10.17582/journal.pjz/20220221120204.
Romano, R., Del Fiore, V. S., & Bucci, C. (2022). Role of the intermediate filament protein Peripherin in health and disease. International Journal of Molecular Sciences, 23(23), 2–16. https://doi.org/10.3390/ijms232315416.
Sahin, Z., Acar, N., Ozbey, O., Ustunel, I., & Demir, R. (2011). Distribution of notch family proteins in intrauterine growth restriction and hypertension complicated human term placentas. Acta Histochemica, 113(3), 270–276. https://doi.org/10.1016/j.acthis.2009.10.006.
Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences, 68, 3033–3046. https://doi.org/10.1007/s00018‐011‐0735‐1.
Smith, D., Price, D. R. G., Burrells, A., Faber, M. N., Hildersley, K. A., Chintoan‐Uta, C., Chapuis, A. F., Stevens, M., Stevenson, K., Burgess, S. T. G., Innes, E. A., Nisbet, A. J., & McNeilly, T. N. (2021). The development of ovine gastric and intestinal organoids for studying ruminant host‐pathogen interactions. Frontiers in Cellular and Infection Microbiology, 11, 1–18. https://doi.org/10.3389/fcimb.2021.733811.
Snider, N. T., & Omary, M. B. (2014). Post‐translational modifications of intermediate filament proteins: Mechanisms and functions. Nature Reviews Molecular Cell Biology, 15(3), 163–177. https://doi.org/10.1038/nrm3753.
Strnad, P., Paschke, S., Jang, K. H., & Ku, N. O. (2012). Keratins: Markers and modulators of liver disease. Current Opinion in Gastroenterology, 28(3), 209–216. https://doi.org/10.1097/MOG.0b013e3283525cb8.
Strouhalova, K., Prechova, M., Gandalovicova, A., Brabek, J., Gregor, M., & Rosel, D. (2020). Vimentin intermediate filaments as potential target for cancer treatment. Cancers, 12(184), 1–20. https://doi.org/10.3390/cancers12010184.
Su, W., van Wijk, S. W., & Brundel, B. J. J. M. (2022). Desmin variants: Trigger for cardiac arrhythmias? Frontiers in Cell and Developmental Biology, 10, 1–11. https://doi.org/10.3389/fcell.2022.986718.
Szabolcs, M. J., Visser, J., Shelanski, M. L., O'Toole, K., & Schullinger, J. N. (1996). Peripherin: A novel marker for the immunohistochemical study of malformations of the enteric nervous system. Pediatric Pathology & Laboratory Medicine, 16(1), 51–70. https://doi.org/10.1080/15513819609168661.
Szymanska‐Chabowska, A., Filip, Ś., Jankowska‐polanska, B., Mazur, G., & Chabowski, M. (2021). Nestin expression as a diagnostic and prognostic marker in colorectal cancer and other tumors. Clinical Medicine Insights: Oncology, 15, 1–10. https://doi.org/10.1177/11795549211038256.
Taggart, M. J., & Morgan, K. G. (2007). Regulation of the uterine contractile apparatus and cytoskeleton. Seminars in Cell & Developmental Biology, 18(3), 296–304. https://doi.org/10.1016/j.semcdb.2007.05.006.
Topaloğlu, U., Karakoç, Z., Akbalık, M. E., Saruhan, B., & Aydın, N. (2022). Immunohistochemical localization of cytokeratin 8 in testes of different cat breeds. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 20–24. https://doi.org/10.47027/duvetfd.1107408.
Wang, N., & Stamenovic, D. (2002). Mechanics of Vimentin intermediate filaments. Journal of Muscle Research and Cell Motility, 23, 535–540. https://doi.org/10.1023/A:1023470709071.
Xu, J., & Mosher, D. (2011). Fibronectin and other adhesive glycoproteins. In R. P. Mecham (Ed.), The extracellular matrix: An overview (1st ed., pp. 41–75). Springer Berlin Heidelberg. https://doi.org/10.1007/978‐3‐642‐16555‐9_2.
Yamagishi, A., Susaki, M., Takano, Y., Mizusawa, M., Mishima, M., Iijima, M., Kuroda, S., Okada, T., & Nakamura, C. (2019). The structural function of nestin in cell body softening is correlated with cancer cell metastasis. International Journal of Biological Sciences, 15(7), 1546–1556. https://doi.org/10.7150/ijbs.33423.
Yay, A., Özdamar, S., Canöz, Ö., Tucer, B., & Baran, M. (2013). Nestin expression in Meningiomas of different grades. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 30(3), 532–540.
Zatloukal, K., Stumptner, C., Lehner, M., Denk, H., Baribault, H., Eshkind, L. G., & Franke, W. W. (2000). Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. The American Journal of Pathology, 156(4), 1263–1274. https://doi.org/10.1016/S0002‐9440(10)64997‐8.
فهرسة مساهمة: Keywords: CK18; abomasum; caprine; immunohistochemistry; laminin; ovine
المشرفين على المادة: 0 (Nestin)
0 (Laminin)
0 (Vimentin)
0 (Desmin)
0 (Peripherins)
تواريخ الأحداث: Date Created: 20240709 Date Completed: 20240709 Latest Revision: 20240709
رمز التحديث: 20240709
DOI: 10.1111/ahe.13088
PMID: 38979752
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0264
DOI:10.1111/ahe.13088