دورية أكاديمية

Strain variation in the Candida albicans iron limitation response.

التفاصيل البيبلوغرافية
العنوان: Strain variation in the Candida albicans iron limitation response.
المؤلفون: Xiong L; Department of Microbiology, University of Georgia, Athens, Georgia, USA., Goerlich K; Department of Microbiology, University of Georgia, Athens, Georgia, USA., Do E; Department of Microbiology, University of Georgia, Athens, Georgia, USA., Mitchell AP; Department of Microbiology, University of Georgia, Athens, Georgia, USA.
المصدر: MSphere [mSphere] 2024 Jul 30; Vol. 9 (7), pp. e0037224. Date of Electronic Publication: 2024 Jul 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 101674533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2379-5042 (Electronic) Linking ISSN: 23795042 NLM ISO Abbreviation: mSphere Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Society for Microbiology, [2015]-
مواضيع طبية MeSH: Candida albicans*/genetics , Candida albicans*/pathogenicity , Candida albicans*/metabolism , Iron*/metabolism , Gene Expression Regulation, Fungal* , Fungal Proteins*/genetics , Fungal Proteins*/metabolism, Mutation ; Virulence ; Gene Expression Profiling ; Transcription Factors/genetics ; Transcription Factors/metabolism ; Phenotype ; Cell Wall/metabolism ; Cell Wall/genetics ; Genetic Variation ; Genotype
مستخلص: Iron acquisition is critical for pathogens to proliferate during invasive infection, and the human fungal pathogen Candida albicans is no exception. The iron regulatory network, established in reference strain SC5314 and derivatives, includes the central player Sef1, a transcription factor that activates iron acquisition genes in response to iron limitation. Here, we explored potential variation in this network among five diverse C. albicans strains through mutant analysis, Nanostring gene expression profiling, and, for two strains, RNA-Seq. Our findings highlight four features that may inform future studies of natural variation and iron acquisition in this species. (i) Conformity: In all strains, major iron acquisition genes are upregulated during iron limitation, and a sef1 Δ/Δ mutation impairs that response and growth during iron limitation. (ii) Response variation: Some aspects of the iron limitation response vary among strains, notably the activation of hypha-associated genes. As this gene set is tied to tissue damage and virulence, variation may impact the progression of infection. (iii) Genotype-phenotype variation: The impact of a sef1 Δ/Δ mutation on cell wall integrity varies, and for the two strains examined the phenotype correlated with sef1 Δ/Δ impact on several cell wall integrity genes. (iv) Phenotype discovery: DNA repair genes were induced modestly by iron limitation in sef1 Δ/Δ mutants, with fold changes we would usually ignore. However, the response occurred in both strains tested and was reminiscent of a much stronger response described in Cryptococcus neoformans , a suggestion that it may have biological meaning. In fact, we observed that the iron limitation of a sef1 Δ/Δ mutant caused recessive phenotypes to emerge at two heterozygous loci. Overall, our results show that a network that is critical for pathogen proliferation presents variation outside of its core functions.IMPORTANCEA key virulence factor of Candida albicans is the ability to maintain iron homeostasis in the host where iron is scarce. We focused on a central iron regulator, SEF1 . We found that iron regulator Sef1 is required for growth, cell wall integrity, and genome integrity during iron limitation. The novel aspect of this work is the characterization of strain variation in a circuit that is required for survival in the host and the connection of iron acquisition to genome integrity in C. albicans .
Competing Interests: The authors declare no conflict of interest.
References: PLoS Pathog. 2008 Nov;4(11):e1000217. (PMID: 19023418)
Genome Res. 2015 Mar;25(3):413-25. (PMID: 25504520)
J Biol Chem. 2006 Dec 29;281(52):40399-411. (PMID: 17074760)
PLoS Pathog. 2012;8(11):e1002956. (PMID: 23133381)
Science. 2000 May 12;288(5468):1062-4. (PMID: 10807578)
Biochim Biophys Acta Mol Cell Res. 2020 Oct;1867(10):118797. (PMID: 32663505)
PLoS Genet. 2016 Dec 9;12(12):e1006487. (PMID: 27935965)
mBio. 2022 Oct 26;13(5):e0193722. (PMID: 35993746)
Wei Sheng Wu Xue Bao. 2009 Mar;49(3):337-42. (PMID: 19623957)
Antibiotics (Basel). 2022 May 26;11(6):. (PMID: 35740125)
PLoS Pathog. 2019 May 22;15(5):e1007787. (PMID: 31116789)
Lancet Infect Dis. 2024 Jul;24(7):e428-e438. (PMID: 38224705)
Mol Microbiol. 2010 Jun;76(6):1572-90. (PMID: 20444104)
mBio. 2018 Dec 4;9(6):. (PMID: 30514787)
Innovation (Camb). 2021 Jul 01;2(3):100141. (PMID: 34557778)
Nucleic Acids Res. 2011 Aug;39(14):6002-15. (PMID: 21511814)
mSphere. 2022 Aug 31;7(4):e0034722. (PMID: 35968963)
mSphere. 2018 Apr 25;3(2):. (PMID: 29695626)
mSphere. 2022 Aug 31;7(4):e0030522. (PMID: 35862800)
J Biosci. 2020;45:. (PMID: 32098918)
J Biol Chem. 2013 Oct 25;288(43):30931-43. (PMID: 24030826)
PLoS Genet. 2009 Sep;5(9):e1000664. (PMID: 19779551)
Fungal Genet Biol. 2012 Apr;49(4):322-31. (PMID: 22343036)
Sci Adv. 2015;1(3):e1500248. (PMID: 25977940)
Bioinformatics. 2014 May 15;30(10):1473-5. (PMID: 24463181)
Fungal Genet Biol. 2008 Sep;45(9):1235-47. (PMID: 18602013)
PLoS Pathog. 2023 Jan 25;19(1):e1011109. (PMID: 36696432)
PLoS Genet. 2009 Dec;5(12):e1000783. (PMID: 20041210)
G3 (Bethesda). 2023 Aug 30;13(9):. (PMID: 37405402)
PLoS Genet. 2020 Jun 11;16(6):e1008881. (PMID: 32525871)
mBio. 2023 Apr 25;14(2):e0349822. (PMID: 36779720)
Nucleic Acids Res. 2017 Jan 4;45(D1):D592-D596. (PMID: 27738138)
Genetics. 2021 Jul 14;218(3):. (PMID: 33989396)
J Biol Chem. 2011 Jul 15;286(28):25154-70. (PMID: 21592964)
Metallomics. 2017 Nov 15;9(11):1483-1500. (PMID: 28879348)
mSphere. 2016 Jun 15;1(3):. (PMID: 27340698)
Eukaryot Cell. 2011 Feb;10(2):207-25. (PMID: 21131439)
mSphere. 2017 Mar 15;2(2):. (PMID: 28317025)
J Bacteriol. 1998 Jan;180(1):163-6. (PMID: 9422607)
Microbiology (Reading). 2003 Mar;149(Pt 3):579-588. (PMID: 12634327)
Genetics. 2024 May 7;227(1):. (PMID: 38529759)
Eukaryot Cell. 2008 Jul;7(7):1168-79. (PMID: 18503007)
Curr Opin Microbiol. 2013 Dec;16(6):708-15. (PMID: 24121029)
Infect Immun. 2005 Sep;73(9):5482-92. (PMID: 16113264)
Bio Protoc. 2020 Nov 05;10(21):e3803. (PMID: 33659457)
Cell Host Microbe. 2011 Aug 18;10(2):118-35. (PMID: 21843869)
Nat Commun. 2018 Jun 8;9(1):2253. (PMID: 29884848)
Microbiol Res. 2011 Jul 20;166(5):430-6. (PMID: 20869222)
Protein Cell. 2014 Oct;5(10):750-60. (PMID: 25000876)
Mol Microbiol. 2002 Jun;44(6):1551-60. (PMID: 12067343)
معلومات مُعتمدة: R01 AI146103 United States AI NIAID NIH HHS; 1R01AI146103 HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID); Startup funds University of Georgia (UGA)
فهرسة مساهمة: Keywords: Candida albicans; DNA repair; iron homeostasis; strain variation
المشرفين على المادة: E1UOL152H7 (Iron)
0 (Fungal Proteins)
0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20240709 Date Completed: 20240730 Latest Revision: 20240801
رمز التحديث: 20240801
مُعرف محوري في PubMed: PMC11288005
DOI: 10.1128/msphere.00372-24
PMID: 38980069
قاعدة البيانات: MEDLINE
الوصف
تدمد:2379-5042
DOI:10.1128/msphere.00372-24