دورية أكاديمية

Evaluating the properties that affect the quality of the charcoal product, determining the limits of toxic emissions during combustion, and studying their impact on human health.

التفاصيل البيبلوغرافية
العنوان: Evaluating the properties that affect the quality of the charcoal product, determining the limits of toxic emissions during combustion, and studying their impact on human health.
المؤلفون: Alzahrani A; General Administration of Laboratories, Saudi Standards Organization, 11471, Riyadh, Saudi Arabia. ahmad_zh6@hotmail.com., Hassan MA; General Administration of Laboratories, Saudi Standards Organization, 11471, Riyadh, Saudi Arabia., Alsubaie S; Fire Testing Lab., Saudi Standards Organization, 11471, Riyadh, Saudi Arabia.
المصدر: Environmental geochemistry and health [Environ Geochem Health] 2024 Jul 09; Vol. 46 (8), pp. 295. Date of Electronic Publication: 2024 Jul 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
مواضيع طبية MeSH: Charcoal*/chemistry, Humans ; Air Pollutants/analysis ; Air Pollutants/toxicity ; Environmental Monitoring/methods
مستخلص: This research focuses on examining the potential impact of charcoal briquettes and lumps on human health due to the emissions they release, and verifying their quality standards. Quality assessment was conducted using a device capable of measuring toxic gases to identify contaminants from various sources such as biomass, synthetic resins, coal, metals, and mineral matter. Toxicity assessments were carried out on five types of briquettes and two varieties of lump charcoal. All charcoal samples were subjected to elemental analysis (SEM/EDAX), including the examination of Ca, Al, Cr, V, Cu, Fe, S, Sr, Si, Ba, Pb, P, Mn, Rb, K, Ti, and Zn. The results showed that burning lump charcoal had toxicity indexes ranging from 2.5 to 5, primarily due to NO x emissions. Briquettes, on the other hand, exhibited higher toxicity indices between 3.5 and 6.0, with CO 2 being the main contributor to toxicity. The average 24-h CO content of all charcoal samples exceeded the World Health Organization's 24-h Air Quality Guideline of 6.34 ppm, with a measurement of 37 ppm. The data indicates that most of the products tested did not meet the prevailing quality standard (EN 1860-2:2005 (E) in Appliances, solid fuels and firelighters for barbecuing-Part 2: Barbecue charcoal and barbecue charcoal briquettes-Requirements and test method, 2005), which specifies a maximum of 1% contaminants, with some products containing as much as 21% impurities. The SEM analysis revealed irregularly shaped grains with an uneven distribution of particles, and the average particle size distribution is quite broad at 5 μm. Malaysia Charcoal had the highest calorific value at 32.80 MJ/Kg, with the value being influenced by the fixed carbon content-higher carbon content resulting in a higher calorific value.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Admasie, A., Kumie, A., & Worku, A. (2018). Children under five from houses of unclean fuel sources and poorly ventilated houses have higher odds of suffering from acute respiratory infection in Wolaita-Sodo Southern Ethiopia: A case-control study. Journal of Environmental and Public Health, 2018, 9320603. (PMID: 10.1155/2018/9320603)
Aeroqual (2021). A beginner's guide to NOx, NO and NO2 as air pollutants. Accessed 6 May 2022.
Alim, M. A., Sarker, M. A. B., Selim, S., et al. (2014). Respiratory involvements among women exposed to the smoke of traditional Biomass fuel and gas fuel in a district of Bangladesh. Environmental Health and Preventive Medicine, 19, 126–134. (PMID: 10.1007/s12199-013-0364-4)
Alves, C. A., Evtyugina, M., Vicente, E., Vicente, A., Gonçalves, C., Neto, A. I., Nunes, T., & Kováts, N. (2022). Outdoor charcoal grilling: Particulate and gas-phase emissions, organic speciation and ecotoxicological assessment. Atmospheric Environment, 285, 119240. (PMID: 10.1016/j.atmosenv.2022.119240)
Anon, (1987). Simple technologies for charcoal making. FAO Forestry paper No. 41.
ASTM (2013). D1762: Standard test method for chemical analysis of wood charcoal. West Conshohocken.
Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42(8), 1619–1640. (PMID: 10.1021/ie0207919)
Azuma, K., Kagi, N., Yanagi, U., & Osawa, H. (2018). Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International, 121, 51–56. (PMID: 10.1016/j.envint.2018.08.059)
Borowski, G., Stępniewski, W., Wójcik-Oliveira, K., (2017). Effect of starch binder on charcoal briquette properties. Int. Agrophys. 31, 571–574.
CAER (University of Kentucky Center for Applied Energy Research) (2010). What are coal combustion by-products (CCBs): Synthetic Gypsum. Kentucky Ash Education Site.
CDC (2020e) Centers for disease control and prevention. The National Institute for Occupational Safety and Health (NIOSH) immediately dangerous to life or health (IDLH).
Das, I., et al. (2017). Biomass cooking fuels and health outcomes for women in Malawi. EcoHealth, 14, 7–19. (PMID: 10.1007/s10393-016-1190-0)
de Oliveira, E., Vital, B. R., Valente, O. F., Gomide, J. L., & de Oliveira, E. (1989). Effect of wood quality on yield and quality of Eucalyptus grandis charcoal. Revista-Arvore, 13(1), 85–97.
Edenhofer, O., Madruga, R.P., & Sokona, Y. (2011). Renewable energy sources and climate change mitigation. IPCC. Intergovermental Panel on Climate Change.
El-Juhany L. I. , I. M. Aref And M. M. Megahed (1996). Properties Of Charcoal Produced From Some Endemic And Exotic Acacia Species Grown In Riyadh, Saudi Arabia. Journal Of The Advances In Agricultural Research, Egypt, 2003, 8(4), 695–704.
EN 1860–2:2005 (2005) . Appliances, solid fuels and firelighters for barbecuing—Part 2: Barbecue charcoal and barbecue charcoal briquettes—Requirements and test method.
EPA (2020). Greenhouse gas emissions. Carbon Dioxide Emissions. United States Environmental Protection Agency. https://www.epa.gov/ghgemissions/overview-greenhouse-gases#carbon-dioxide . Accessed 14 January 2021.
Gumma, H. & Fathi, M. (2000). A simple charcoal kiln for hardwoods or other dense biomass (quick, efficient, economic with low environmental impact). H. Gomaa/Icehm2000, Cairo University, Egypt, September, (pp. 167–174).
Hindi, S. S. (1994). Charcoal properties as affected by raw material and charcoaling parameters. Ms.C. Thesis, Forestry. Dept., Fac Agric., Alex. Univ. Egypt.
Hogg, J. C. (2004). Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet, 364, 709–721. (PMID: 10.1016/S0140-6736(04)16900-6)
Houck, P. M., & Hampson, N. B. (1997). Epidemic carbon Monoxide poisoning following a winter storm. Journal of Emergency Medicine, 15, 469–473. (PMID: 10.1016/S0736-4679(97)00079-6)
Huang, H. L., Lee, W. M. G., & Wu, F. S. (2016). Emissions of air pollutants from indoor charcoal barbecue. Journal of Hazardous Materials, 302, 198–207. (PMID: 10.1016/j.jhazmat.2015.09.048)
Imam, B. (2005). Energy resources of Bangladesh. University grants commission of Bangladesh.
Imeh, E. O., Ibrahim, A. M., Alewo, O. A., Stanley, I. R., & Opeoluwa, O. F. (2017). Production and characterization of biomass briquettes from tannery solid waste. Recycling, 2(17), 1–19.
Jakka, R. S., Datta, M., & Ramana, G. V. (2010). Liquefaction behaviour of loose and compacted pond ash. Soil Dynamics and Earthquake Engineering, 30, 580–590. (PMID: 10.1016/j.soildyn.2010.01.015)
Jelonek, Z., Drobniak, A., Mastalerz, M., & Jelonek, I. (2020). Environmental implications of the quality of charcoal briquettes and lump charcoal used for grilling. Science of the Total Environment, 747, 141267. (PMID: 10.1016/j.scitotenv.2020.141267)
Jeoung, T. Y., Yang, S. M., & Kang, S. G. (2020). Study on fuel specificity and harmful air pollutants factor of agglomerated wood charcoal. Journal of the Korean Wood Science and Technology, 48, 253–266. (PMID: 10.5658/WOOD.2020.48.2.253)
Johnson, E., (2009). Cneering Research (IJMER). Vol.2, Issue.3, May-June 2012 Pp-1386-1394. harcoal versus LPG grilling: a carbon-footprint comparison. Environ. Impact Assess Rev 29, 370–378.
Kammen, D.M., & Lew, D.J. (2005). Review of technologies for the production and use of charcoal. Renewable and Appropriate Energy Laboratory Report, Energy and Resources Group and Goldman School of Public Policy - University of California, Berkeley, CA 94720–3050.
Kurt, O. K., Zhang, J., & Pinkerton, K. E. (2016). Pulmonary health effects of air pollution. Current Opinion in Pulmonary Medicine, 22(2), 138–143. (PMID: 10.1097/MCP.0000000000000248)
Kutchko, B. G., & Kim, A. G. (2006). Fly ash characterization by SEM-EDS. Fuel, 85, 2537–2544. (PMID: 10.1016/j.fuel.2006.05.016)
Lacour, N.A. (2012). Engineering characteristics of coal combustion residuals and a reconstitution technique for triaxial samples. MS thesis. Virginia.
Lam, N. L., Smith, K. R., Gauthier, A., & Bates, M. N. (2012). Kerosene: A review of household uses and their hazards in low- and middle-income countries. Journal of Toxicology and Environmental Health. Part b, Critical Reviews, 15, 396–432. (PMID: 10.1080/10937404.2012.710134)
Liou, S. H., Jacobson-Kram, D., Poirier, M. C., et al. (1989). Biological monitoring of fire fighters: Sister Chromatid exchange and Polycyclic aromatic hydrocarbon-DNA adducts in peripheral blood cells. Cancer Research, 49, 4929–4935.
Liu, K. S., Paz, M. K., Flessel, P., et al. (2000). Unintentional carbon Monoxide deaths in California from residential and other Nonvehicular sources. Archives of Environmental Health, 55, 375–381. (PMID: 10.1080/00039890009604033)
Mahamudul Hasnari, Farhad Howladar. M, Labiba, Nusrat and Pulok Kanti Deb (2013) Ash content and its relevance with the coal grade and environment in Bangladesh. “International Journal of Scientific & Engineering Research” vol.4, April-2013 pp 669–676.
Menemencioglu, K. (2013). Traditional wood charcoal production labour in turkish forestry (Çankırı Sample). Journal of Food, Agriculture & Environment, 11(2), 1136–1142.
Morikawa, T., & Yanai, E. (1986). Toxic gases evolution from air-controlled fires in a semi-full scale room. Journal of Fire Sciences, 4(299–314), 4.
Nazurah bt Abdul Wahid, N. N., Balalla, N. P., & Koh, D. (2014). Respiratory symptoms of vendors in an open-air Hawker center in Brunei Darussalam. Frontiers in Public Health, 2, 167. (PMID: 10.3389/fpubh.2014.00167)
North, C. M., Valeri, L., Hunt, P. W., et al. (2017). Cooking fuel and respiratory symptoms among people living with HIV in rural Uganda. ERJ Open Research, 3, 00094–02016. (PMID: 10.1183/23120541.00094-2016)
Owusu Boadi, K., & Kuitunen, M. (2006). Factors affecting the choice of cooking fuel, cooking place and respiratory health in the Accra metropolitan area, Ghana. Journal of Biosocial Science, 38, 403–412. (PMID: 10.1017/S0021932005026635)
Pak, T., Zohoori, V., Azevedo, L. B., & Idowu, O. (2021). Health risks associated with the production and usage of charcoal: a systematic review.
Penfold, R., & Willig, J. L. (1961). The eucalyptus botany, cultivation, chemistry and utilization. London—Leonard hill (books) limited (p. 552). Inter Science Publishers.
Penney, D. G. (Ed.). (2000). Carbon Monoxide Toxicity (1st ed.). CRC Press.
Pereira, B. L. C., Carneiro, A. D. C. O., Carvalho, A. M. M. L., Colodette, J. L., Oliveira, A. C., & Fontes, M. P. F. (2013). Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources, 8(3), 4574–4592. (PMID: 10.15376/biores.8.3.4574-4592)
Prasityousil, J., & Muenjina, A. (2013). Properties of solid fuel briquettes produced from rejected material of municipal waste composting. Procedia Environmental Sciences, 17, 603–610. (PMID: 10.1016/j.proenv.2013.02.076)
Raymer, A. K. P. (2006). A comparison of avoided greenhouse gas emissions when using different kind of wood energy. Biomass and Bioenergy, 30, 605–617. (PMID: 10.1016/j.biombioe.2006.01.009)
Selvig, W. A., & Gibson, F. H. (1956). Analysis of Ash from United States Coals, U. S. Department of the States: U. S. Bur. Mines Tech. Paper 679. Page 24.
Smith, K. R., Mehta, S., & Maeusezahl-Feuz, M. (2004). Indoor air pol-lution from household use of solid fuels. In M. Ezzati, A. D. Rodgers, A. D. Lopez, & C. J. L. Murray (Eds.), Comparative quantification of health risks: Global and regional burden of disease attributable to selected major risk factors (pp. 1435–1493). World Health Organization.
Naval Engineering Standard NES-713. Issue 3: Products of combustion from small specimens of materials. Ministry of Defence, Deputy Controller Warships Section, NA131.UK.
WDHS, (2020). Wisconsin Department of Health Services. Carbon dioxide health effects. https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm .
WHO (1984). Recommended health-based occupational exposure limits for respiratory emissions. Report of World Health Organization Study Group. WHO Technical Report Series 707, Geneva. https://apps.who.int/iris/bitstream/handle/10665/40177/WHO_TRS_707.pdf ? equence=1&isAllowed=y.
WHO (2007). Indoor air pollution: National burden of disease estimates. https://apps.who.int/iris/bitstream/handle/10665/69651/WHO_SDE_PHE_07.01_eng.pdf?sequence=1&isAllowed=y.
WHO (2018). Ambient (Outdoor) Air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
World Health Organization (2002) The health effects of indoor air pollution exposure in developing countries/by Nigel Bruce, Rogelio Perez-Padilla, and Rachel Albalak. World Health Organization, Geneva. https://apps.who.int/iris/handle/10665/67496.
Yazdani, M. G., Hamizan, M., & Shukur, M. N. (2012). Investigation of the fuel value and the environmental impact of selected wood samples gathered from Brunei Darussalam. Renewable and Sustainable Energy Reviews, 16(7), 4965–4969. (PMID: 10.1016/j.rser.2012.04.025)
Zanuncio, A. J. V., Carvalho, A. G., Trugilho, P. F., & Monteiro, T. C. (2014). Extractives and energetic properties of wood and charcoal. Revista Árvore, 38, 369–374. (PMID: 10.1590/S0100-67622014000200018)
فهرسة مساهمة: Keywords: Air pollution; Calorific values; Charcoal; Quality charcoal; Toxicity index
المشرفين على المادة: 16291-96-6 (Charcoal)
0 (Air Pollutants)
تواريخ الأحداث: Date Created: 20240709 Date Completed: 20240709 Latest Revision: 20240816
رمز التحديث: 20240816
DOI: 10.1007/s10653-024-02065-5
PMID: 38980526
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2983
DOI:10.1007/s10653-024-02065-5