دورية أكاديمية

Salt stress alters the cell wall components and structure in Miscanthus sinensis stems.

التفاصيل البيبلوغرافية
العنوان: Salt stress alters the cell wall components and structure in Miscanthus sinensis stems.
المؤلفون: van der Cruijsen K; Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands., Al Hassan M; Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands., van Erven G; Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands.; Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands., Kollerie N; Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands., van Lent B; Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands., Dechesne A; Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands., Dolstra O; Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands., Paulo MJ; Biometris, Wageningen University & Research, Wageningen, The Netherlands., Trindade LM; Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands.
المصدر: Physiologia plantarum [Physiol Plant] 2024 Jul-Aug; Vol. 176 (4), pp. e14430.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Scandinavian Society For Plant Physiology Country of Publication: Denmark NLM ID: 1256322 Publication Model: Print Cited Medium: Internet ISSN: 1399-3054 (Electronic) Linking ISSN: 00319317 NLM ISO Abbreviation: Physiol Plant Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Scandinavian Society For Plant Physiology
Original Publication: Lund, Sweden [etc.]
مواضيع طبية MeSH: Cell Wall*/chemistry , Cell Wall*/metabolism , Salt Stress* , Lignin*/metabolism , Poaceae*/drug effects , Poaceae*/physiology , Poaceae*/genetics , Plant Stems*/drug effects , Plant Stems*/chemistry , Plant Stems*/metabolism, Pectins/metabolism ; Cellulose/metabolism ; Genotype ; Biomass ; Sodium Chloride/pharmacology
مستخلص: Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.
(© 2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.)
References: An, P., Li, X., Zheng, Y., Matsuura, A., Abe, J., Eneji, A.E., Tanimoto, E. and Inanaga, S. (2014) ‘Effects of NaCl on root growth and cell wall composition of two soya bean cultivars with contrasting salt tolerance’, Journal of Agronomy and Crop Science, 200(3), pp. 212–218. Available at: https://doi.org/10.1111/jac.12060.
Arantes, V. and Saddler, J.N. (2010) ‘Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis’, Biotechnology for Biofuels, 3(1), p. 4. Available at: https://doi.org/10.1186/1754-6834-3-4.
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S. (2020) ‘Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance’, Plant Physiology and Biochemistry, 156(July), pp. 64–77. Available at: https://doi.org/10.1016/j.plaphy.2020.08.042.
Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015) ‘Fitting Linear Mixed‐Effects Models Using lme4’, Journal of Statistical Software, 67(1), pp. 1–48. Available at: https://doi.org/10.18637/jss.v067.i01.
Belmokhtar, N., Arnoult, S., Chabbert, B., Charpentier, J.P. and Brancourt‐Hulmel, M. (2017) ‘Saccharification performances of Miscanthus at the pilot and miniaturized assay scales: Genotype and year variabilities according to the biomass composition’, Frontiers in Plant Science, 8(May), pp. 1–13. Available at: https://doi.org/10.3389/fpls.2017.00740.
Bhatia, R., Gallagher, J.A., Gomez, L.D. and Bosch, M. (2017) ‘Genetic engineering of grass cell wall polysaccharides for biorefining’, Plant Biotechnology Journal, 15(9), pp. 1071–1092. Available at: https://doi.org/10.1111/pbi.12764.
Brancourt‐Hulmel, M., Arnoult, S., Cézard, L., El Hage, F., Gineau, E., Girones, J., Griveau, Y., Jacquemont, M.P., Jaffuel, S., Mignot, E., Mouille, G., Lapierre, C., Legée, F., Méchin, V., Navard, P., Vo, L.T.T. and Reymond, M. (2021) ‘A Comparative Study of Maize and Miscanthus Regarding Cell‐Wall Composition and Stem Anatomy for Conversion into Bioethanol and Polymer Composites’, Bioenergy Research [Preprint]. Available at: https://doi.org/10.1007/s12155-020-10239-z.
Byrt, C.S., Munns, R., Burton, R.A., Gilliham, M. and Wege, S. (2018) ‘Root cell wall solutions for crop plants in saline soils’, Plant Science. Elsevier Ireland Ltd, pp. 47–55. Available at: https://doi.org/10.1016/j.plantsci.2017.12.012.
Carpita, N.C. (1996) ‘Structure and biogenesis of the cell walls of grasses’, Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), pp. 445–476. Available at: https://doi.org/10.1146/annurev.arplant.47.1.445.
Chen, C.L., van derSchoot, H., Dehghan, S., Alvim Kamei, C.L., Schwarz, K.U., Meyer, H., Visser, R.G.F. and van derLinden, C.G. (2017) ‘Genetic diversity of salt tolerance in Miscanthus’, Frontiers in Plant Science, 8. Available at: https://doi.org/10.3389/fpls.2017.00187.
Chen, L., Auh, C., Chen, F., Cheng, X., Aljoe, H., Dixon, R.A. and Wang, Z. (2002) ‘Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages’, Journal of Agricultural and Food Chemistry, 50(20), pp. 5558–5565. Available at: https://doi.org/10.1021/jf020516x.
Cheng, S., Yu, H., Hu, M., Wu, Y., Cheng, L., Cai, Q., Tu, Y., Xia, T. and Peng, L. (2018) ‘Miscanthus accessions distinctively accumulate cadmium for largely enhanced biomass enzymatic saccharification by increasing hemicellulose and pectin and reducing cellulose CrI and DP’, Bioresource Technology, 263(February), pp. 67–74. Available at: https://doi.org/10.1016/j.biortech.2018.04.031.
Chourasia, V.R., Pandey, A., Pant, K.K. and Henry, R.J. (2021) ‘Improving enzymatic digestibility of sugarcane bagasse from different varieties of sugarcane using deep eutectic solvent pretreatment’, Bioresource Technology, 337(June), p. 125480. Available at: https://doi.org/10.1016/j.biortech.2021.125480.
Colin, L., Ruhnow, F., Zhu, J.K., Zhao, C., Zhao, Y. and Persson, S. (2023) ‘The cell biology of primary cell walls during salt stress’, Plant Cell. American Society of Plant Biologists, pp. 201–217. Available at: https://doi.org/10.1093/plcell/koac292.
Corrêa‐Ferreira, M.L., Viudes, E.B., deMagalhães, P.M., Paixão deSantana Filho, A., Sassaki, G.L., Pacheco, A.C. and deOliveira Petkowicz, C.L. (2019) ‘Changes in the composition and structure of cell wall polysaccharides from Artemisia annua in response to salt stress’, Carbohydrate Research, 483(April), p. 107753. Available at: https://doi.org/10.1016/j.carres.2019.107753.
Da Costa, R.M.F., Lee, S.J., Allison, G.G., Hazen, S.P., Winters, A. and Bosch, M. (2014) ‘Genotype, development and tissue‐derived variation of cell‐wall properties in the lignocellulosic energy crop Miscanthus’, Annals of Botany, 114(6), pp. 1265–1277. Available at: https://doi.org/10.1093/aob/mcu054.
Da Costa, R.M.F., Pattathil, S., Avci, U., Lee, S.J., Hazen, S.P., Winters, A., Hahn, M.G. and Bosch, M. (2017) ‘A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin’, New Phytologist, 213(4), pp. 1710–1725. Available at: https://doi.org/10.1111/nph.14306.
Da Costa, R.M.F., Pattathil, S., Avci, U., Winters, A., Hahn, M.G. and Bosch, M. (2019) ‘Desirable plant cell wall traits for higher‐quality Miscanthus lignocellulosic biomass’, Biotechnology for Biofuels, 12(1), pp. 1–18. Available at: https://doi.org/10.1186/s13068-019-1426-7.
Crowe, J.D., Feringa, N., Pattathil, S., Merritt, B., Foster, C., Dines, D., Ong, R.G. and Hodge, D.B. (2017) ‘Identification of developmental stage and anatomical fraction contributions to cell wall recalcitrance in switchgrass’, Biotechnology for Biofuels, 10(1), pp. 1–16. Available at: https://doi.org/10.1186/s13068-017-0870-5.
van derCruijsen, K., Al Hassan, M., vanErven, G., Dolstra, O. and Trindade, L.M. (2021) ‘Breeding targets to improve biomass quality in Miscanthus’, Molecules, 26(2), pp. 1–28. Available at: https://doi.org/10.3390/molecules26020254.
Daliakopoulos, I.N., Tsanis, I.K., Koutroulis, A., Kourgialas, N.N., Varouchakis, A.E., Karatzas, G.P. and Ritsema, C.J. (2016) ‘The threat of soil salinity: A European scale review’, Science of the Total Environment, 573, pp. 727–739. Available at: https://doi.org/10.1016/j.scitotenv.2016.08.177.
DiCara, C. and Gedan, K. (2023) ‘Distinguishing the Effects of Stress Intensity and Stress Duration in Plant Responses to Salinity’, Plants, 12(13). Available at: https://doi.org/10.3390/plants12132522.
vanErven, G., Hendrickx, P., Al Hassan, M., Beelen, B., op denKamp, R., Keijsers, E., van derCruijsen, K., Trindade, L.M., Harmsen, P.F.H. and vanPeer, A.F. (2023) ‘Plant Genotype and Fungal Strain Harmonization Improves Miscanthus sinensis Conversion by the White‐Rot Fungus Ceriporiopsis subvermispora’, ACS Sustainable Chemistry and Engineering, 11(17), pp. 6752–6764. Available at: https://doi.org/10.1021/acssuschemeng.3c00815.
vanErven, G., deVisser, R., Merkx, D.W.H., Strolenberg, W., deGijsel, P., Gruppen, H. and Kabel, M.A. (2017) ‘Quantification of Lignin and Its Structural Features in Plant Biomass Using 13C Lignin as Internal Standard for Pyrolysis‐GC‐SIM‐MS’, Analytical Chemistry, 89(20), pp. 10907–10916. Available at: https://doi.org/10.1021/acs.analchem.7b02632.
vanErven, G., deVisser, R., deWaard, P., vanBerkel, W.J.H. and Kabel, M.A. (2019) ‘Uniformly 13C Labeled Lignin Internal Standards for Quantitative Pyrolysis‐GC‐MS Analysis of Grass and Wood’, ACS Sustainable Chemistry and Engineering, 7(24), pp. 20070–20076. Available at: https://doi.org/10.1021/acssuschemeng.9b05926.
Fox, J. and Weisberg, S. (2018) An R companion to applied regression. Sage publications.
Le Gall, H., Philippe, F., Domon, J.‐M., Gillet, F., Pelloux, J. and Rayon, C. (2015) ‘Cell Wall Metabolism in Response to Abiotic Stress’, Plants, 4(1), pp. 112–166. Available at: https://doi.org/10.3390/plants4010112.
Gao, Y., Lipton, A.S., Wittmer, Y., Murray, D.T. and Mortimer, J.C. (2020) ‘A grass‐specific cellulose–xylan interaction dominates in sorghum secondary cell walls’, Nature Communications, 11(1), pp. 1–10. Available at: https://doi.org/10.1038/s41467-020-19837-z.
Halpin, C. (2019) ‘Lignin engineering to improve saccharification and digestibility in grasses’, Current Opinion in Biotechnology, 56, pp. 223–229. Available at: https://doi.org/10.1016/j.copbio.2019.02.013.
Hatfield, R.D., Rancour, D.M. and Marita, J.M. (2017) ‘Grass cell walls: A story of cross‐linking’, Frontiers in Plant Science, 7(January). Available at: https://doi.org/10.3389/fpls.2016.02056.
Hayat, K., Bundschuh, J., Jan, F., Menhas, S., Hayat, S., Haq, F., Shah, M.A., Chaudhary, H.J. and Ullah, A. (2020) ‘Technology Combating soil salinity with combining saline agriculture and phytomanagement with salt‐ accumulating plants’, Critical Reviews in Environmental Science and Technology, 50(11), pp. 1085–1115. Available at: https://doi.org/10.1080/10643389.2019.1646087.
He, L., Wang, C., Shi, H., Zhou, W., Zhang, Q. and Chen, X. (2019) ‘Combination of steam explosion pretreatment and anaerobic alkalization treatment to improve enzymatic hydrolysis of Hippophae rhamnoides’, Bioresource Technology, 289, p. 121693. Available at: https://doi.org/https://doi.org/10.1016/j.biortech.2019.121693.
Hodgson‐Kratky, K., Papa, G., Rodriguez, A., Stavila, V., Simmons, B., Botha, F., Furtado, A. and Henry, R. (2019) ‘Relationship between sugarcane culm and leaf biomass composition and saccharification efficiency’, Biotechnology for Biofuels, 12(1), pp. 1–18. Available at: https://doi.org/10.1186/s13068-019-1588-3.
Hoover, A., Emerson, R., Ray, A., Stevens, D., Morgan, S., Cortez, M., Kallenbach, R., Sousek, M., Farris, R. and Daubaras, D. (2018) ‘Impact of Drought on Chemical Composition and Sugar Yields From Dilute‐Acid Pretreatment and Enzymatic Hydrolysis of Miscanthus, a Tall Fescue Mixture, and Switchgrass’, Frontiers in Energy Research, 6(June), pp. 1–15. Available at: https://doi.org/10.3389/fenrg.2018.00054.
Hu, Z., Wang, Youmei, Liu, J., Li, Y., Wang, Yanting, Huang, J., Ai, Y., Chen, P., He, Y., Aftab, M.N., Wang, L. and Peng, L. (2021) ‘Integrated NIRS and QTL assays reveal minor mannose and galactose as contrast lignocellulose factors for biomass enzymatic saccharification in rice’, Biotechnology for Biofuels, 14(1), pp. 1–13. Available at: https://doi.org/10.1186/s13068-021-01987-x.
Huang, C., Jiang, X., Shen, X., Hu, J., Tang, W., Wu, X., Ragauskas, A., Jameel, H., Meng, X. and Yong, Q. (2022) ‘Lignin‐enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics’, Renewable and Sustainable Energy Reviews, 154(October 2021), p. 111822. Available at: https://doi.org/10.1016/j.rser.2021.111822.
Iraki, N.M., Singh, N., Bressan, R.A. and Carpita, N.C. (1989) ‘Cell Walls of Tobacco Cells and Changes in Composition Associated with Reduced Growth upon Adaptation to Water and Saline Stress 1’, Plant Physiology, 91(1), pp. 48–53. Available at: https://doi.org/10.1104/pp.91.1.48.
Isayenkov, S. V. and Maathuis, F.J.M. (2019) ‘Plant salinity stress: Many unanswered questions remain’, Frontiers in Plant Science, 10(February). Available at: https://doi.org/10.3389/fpls.2019.00080.
Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Kempen, B. and deSousa, L. (2019) ‘Global mapping of soil salinity change’, Remote Sensing of Environment, 231(December 2018), p. 111260. Available at: https://doi.org/10.1016/j.rse.2019.111260.
Jaramillo Roman, V. (2021) Salt tolerance strategies of the ancient Andean crop quinoa, Wageningen University: Wageningen, The Netherlands. Available at: https://doi.org/10.18174/535249.
Jeong, H.Y., Nguyen, H.P. and Lee, C. (2015) ‘Genome‐wide identification and expression analysis of rice pectin methylesterases: Implication of functional roles of pectin modification in rice physiology’, Journal of Plant Physiology, 183, pp. 23–29. Available at: https://doi.org/10.1016/j.jplph.2015.05.001.
Kang, X., Kirui, A., Dickwella Widanage, M.C., Mentink‐Vigier, F., Cosgrove, D.J. and Wang, T. (2019) ‘Lignin‐polysaccharide interactions in plant secondary cell walls revealed by solid‐state NMR’, Nature Communications, 10(1), pp. 1–10. Available at: https://doi.org/10.1038/s41467-018-08252-0.
Kirui, A., Zhao, W., Deligey, F., Yang, H., Kang, X., Mentink‐Vigier, F. and Wang, T. (2022) ‘Carbohydrate‐aromatic interface and molecular architecture of lignocellulose’, Nature Communications, 13(1), p. 538. Available at: https://doi.org/10.1038/s41467-022-28165-3.
Kumar, Ashwani, Kumar, Arvind, Kumar, P., Lata, C. and Kumar, S. (2018) ‘Effect of individual and interactive alkalinity and salinity on physiological, biochemical and nutritional traits of marvel grass’, Indian Journal of Experimental Biology, 56(8), pp. 573–581.
Landi, S., Hausman, J.F., Guerriero, G. and Esposito, S. (2017) ‘Poaceae vs. Abiotic stress: Focus on drought and salt stress, recent insights and perspectives’, Frontiers in Plant Science, 8(July), pp. 1–9. Available at: https://doi.org/10.3389/fpls.2017.01214.
Lenth, R. V (2023) ‘emmeans: Estimated Marginal Means, aka Least‐Squares Means’. Available at: https://CRAN.R-project.org/package=emmeans.
Lewandowski, I., Clifton‐Brown, J., Trindade, L.M., Van Der Linden, G.C., Schwarz, K.U., Müller‐Sämann, K., Anisimov, A., Chen, C.L., Dolstra, O., Donnison, I.S., Farrar, K., Fonteyne, S., Harding, G., Hastings, A., Huxley, L.M., Iqbal, Y., Khokhlov, N., Kiesel, A., Lootens, P., Meyer, H., Mos, M., Muylle, H., Nunn, C., Özgüven, M., Roldán‐Ruiz, I., Schüle, H., Tarakanov, I., Der Weijde, T., Wagner, M., Xi, Q. and Kalinina, O. (2016) ‘Progress on optimizing Miscanthus biomass production for the european bioeconomy: Results of the EU FP7 project OPTIMISC’, Frontiers in Plant Science, 7, pp. 1–23. Available at: https://doi.org/10.3389/fpls.2016.01620.
Li, F., Ren, S., Zhang, W., Xu, Z., Xie, G., Chen, Y., Tu, Y., Li, Qing, Zhou, S., Li, Y., Tu, F., Liu, L., Wang, Y., Jiang, J., Qin, J., Li, S., Li, Qiwei, Jing, H.C., Zhou, F., Gutterson, N. and Peng, L. (2013) ‘Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus’, Bioresource Technology, 130, pp. 629–637. Available at: https://doi.org/10.1016/j.biortech.2012.12.107.
Li, X., Weng, J.K. and Chapple, C. (2008) ‘Improvement of biomass through lignin modification’, Plant Journal, 54(4), pp. 569–581. Available at: https://doi.org/10.1111/j.1365-313X.2008.03457.x.
De Lima, R.B., Dos Santos, T.B., Vieira, L.G.E., De Lourdes Lúcio Ferrarese, M., Ferrarese‐Filho, O., Donatti, L., Boeger, M.R.T. and De Oliveira Petkowicz, C.L. (2014) ‘Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells’, Carbohydrate Polymers, 112, pp. 686–694. Available at: https://doi.org/10.1016/j.carbpol.2014.06.042.
Lygin, A. V., Upton, J., Dohleman, F.G., Juvik, J., Zabotina, O.A., Widholm, J.M. and Lozovaya, V. V. (2011) ‘Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop ‐Miscanthus’, GCB Bioenergy, 3(4), pp. 333–345. Available at: https://doi.org/10.1111/j.1757-1707.2011.01091.x.
Maksup, S., Sengsai, S., Laosuntisuk, K., Asayot, J. and Pongprayoon, W. (2020) ‘Physiological responses and the expression of cellulose and lignin associated genes in Napier grass hybrids exposed to salt stress’, Acta Physiologiae Plantarum, 42(7), pp. 1–12. Available at: https://doi.org/10.1007/s11738-020-03092-2.
Matsushita, Y., Kakehi, A., Miyawaki, S. and Yasuda, S. (2004) ‘Formation and chemical structures of acid‐soluble lignin II: Reaction of aromatic nuclei model compounds with xylan in the presence of a counterpart for condensation, and behavior of lignin model compounds with guaiacyl and syringyl nuclei in 72% sulfuric’, Journal of Wood Science, 50(2), pp. 136–141. Available at: https://doi.org/10.1007/s10086-003-0543-9.
Meshitsuka, G., Lee, Z.Z., Nakano, J. and Eda, S. (1982) ‘Studies on the Nature of Lignin ‐ Carbohydrate Bonding’, Journal of Wood Chemistry and Technology, 2(3), pp. 251–267. Available at: https://doi.org/10.1080/02773818208085134.
Minor, J.L. (1982) ‘Chemical Linkage of Pine Polysaccharides to Lignin’, Journal of Wood Chemistry and Technology, 2(1), pp. 1–16. Available at: https://doi.org/10.1080/02773818208085116.
Mohnen, D. (2008) ‘Pectin structure and biosynthesis’, Current Opinion in Plant Biology, 11(3), pp. 266–277. Available at: https://doi.org/10.1016/j.pbi.2008.03.006.
Oliveira, D.M., Mota, T.R., Salatta, F. V., Sinzker, R.C., Končitíková, R., Kopečný, D., Simister, R., Silva, M., Goeminne, G., Morreel, K., Rencoret, J., Gutiérrez, A., Tryfona, T., Marchiosi, R., Dupree, P., delRío, J.C., Boerjan, W., McQueen‐Mason, S.J., Gomez, L.D., Ferrarese‐Filho, O. and dosSantos, W.D. (2020) ‘Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize’, Plant Cell and Environment, 43(9), pp. 2172–2191. Available at: https://doi.org/10.1111/pce.13805.
Pancaldi, F. and Trindade, L.M. (2020) ‘Marginal Lands to Grow Novel Bio‐Based Crops: A Plant Breeding Perspective’, Frontiers in Plant Science, 11, p. 227. Available at: https://doi.org/10.3389/fpls.2020.00227.
Pauly, M., Gille, S., Liu, L., Mansoori, N., deSouza, A., Schultink, A. and Xiong, G. (2013) ‘Hemicellulose biosynthesis’, Planta, 238(4), pp. 627–642. Available at: https://doi.org/10.1007/s00425-013-1921-1.
Petit, J., Gulisano, A., Dechesne, A. and Trindade, L.M. (2019) ‘Phenotypic Variation of Cell Wall Composition and Stem Morphology in Hemp (Cannabis sativa L.): Optimization of Methods’, Frontiers in Plant Science, 10(July). Available at: https://doi.org/10.3389/fpls.2019.00959.
Pettolino, F.A., Walsh, C., Fincher, G.B. and Bacic, A. (2012) ‘Determining the polysaccharide composition of plant cell walls’, Nature Protocols, 7(9), pp. 1590–1607. Available at: https://doi.org/10.1038/nprot.2012.081.
Qin, Z., Ma, Y.X., Liu, H.M., Qin, G.Y. and Wang, X. de (2018) ‘Structural elucidation of lignin‐carbohydrate complexes (LCCs) from Chinese quince (Chaenomeles sinensis) fruit’, International Journal of Biological Macromolecules, 116, pp. 1240–1249. Available at: https://doi.org/10.1016/j.ijbiomac.2018.05.117.
Ralph, J., Lapierre, C. and Boerjan, W. (2019) ‘Lignin structure and its engineering’, Current Opinion in Biotechnology, 56, pp. 240–249. Available at: https://doi.org/10.1016/j.copbio.2019.02.019.
Rancour, D.M., Marita, J.M. and Hatfield, R.D. (2012) ‘Cell wall composition throughout development for the model grass Brachypodium distachyon’, Frontiers in Plant Science, 3(DEC), pp. 1–14. Available at: https://doi.org/10.3389/fpls.2012.00266.
Rengasamy, P. (2010) ‘Soil processes affecting crop production in salt‐affected soils’, Functional Plant Biology, 37(7), pp. 613–620. Available at: https://doi.org/10.1071/FP09249.
Resch, M.G., Baker, J.O. and Decker, S.R. (2015) Low Solids Enzymatic Saccharification of Lignocellulosic Biomass:National Renewable Energy Laboratory Golden, CO.
Rui, Y. and Dinneny, J.R. (2020) ‘A wall with integrity: surveillance and maintenance of the plant cell wall under stress’, New Phytologist, 225(4), pp. 1428–1439. Available at: https://doi.org/10.1111/nph.16166.
Saini, J.K., Saini, R. and Tewari, L. (2015) ‘Lignocellulosic agriculture wastes as biomass feedstocks for second‐generation bioethanol production: concepts and recent developments’, 3 Biotech, 5(4), pp. 337–353. Available at: https://doi.org/10.1007/s13205-014-0246-5.
Schäfer, J., Sattler, M., Iqbal, Y., Lewandowski, I. and Bunzel, M. (2019) ‘Characterization of Miscanthus cell wall polymers’, GCB Bioenergy, 11(1), pp. 191–205. Available at: https://doi.org/10.1111/gcbb.12538.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2008) ‘Determination of structural carbohydrates and lignin in biomass’, Laboratory analytical procedure, 1617(1), pp. 1–16.
Somerville, C. (2006) ‘Cellulose Synthesis in Higher Plants’, Annual Review of Cell and Developmental Biology, 22(1), pp. 53–78. Available at: https://doi.org/10.1146/annurev.cellbio.22.022206.160206.
De Souza, A.P., Kamei, C.L.A., Torres, A.F., Pattathil, S., Hahn, M.G., Trindade, L.M. and Buckeridge, M.S. (2015) ‘How cell wall complexity influences saccharification efficiency in Miscanthus sinensis’, Journal of Experimental Botany, 66(14), pp. 4351–4365. Available at: https://doi.org/10.1093/jxb/erv183.
Stavridou, E., Webster, R.J. and Robson, P.R.H. (2019) ‘Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments’, Annals of Botany, pp. 1–22. Available at: https://doi.org/10.1093/aob/mcz009.
Tang, Y., Wang, M., Cao, L., Dang, Z., Ruan, N., Wang, Y., Huang, Y., Wu, J., Zhang, M., Xu, Z., Chen, W., Li, F. and Xu, Q. (2022) ‘OsUGE3‐mediated cell wall polysaccharides accumulation improves biomass production, mechanical strength, and salt tolerance’, Plant Cell and Environment, 45(8), pp. 2492–2507. Available at: https://doi.org/10.1111/pce.14359.
Tiwari, G., Duraivadivel, P., Sharma, S. and Hariprasad, P. (2018) ‘1‐Aminocyclopropane‐1‐carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress’, Scientific Reports, 8(1), pp. 1–12. Available at: https://doi.org/10.1038/s41598-018-35565-3.
Tryfona, T., Bourdon, M., Delgado Marques, R., Busse‐Wicher, M., Vilaplana, F., Stott, K. and Dupree, P. (2023) ‘Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin’, Plant Journal, 113(5), pp. 1004–1020. Available at: https://doi.org/10.1111/tpj.16096.
Uddin, M.N., Hanstein, S., Leubner, R. and Schubert, S. (2013) ‘Leaf Cell‐Wall Components as Influenced in the First Phase of Salt Stress in Three Maize (Zea mays L.) Hybrids Differing in Salt Resistance’, Journal of Agronomy and Crop Science, 199(6), pp. 405–415. Available at: https://doi.org/10.1111/jac.12031.
Vago, M.E., Jaurena, G., Estevez, J.M., Castro, M.A., Zavala, J.A. and Ciancia, M. (2021) ‘Salt stress on Lotus tenuis triggers cell wall polysaccharide changes affecting their digestibility by ruminants’, Plant Physiology and Biochemistry, 166(February), pp. 405–415. Available at: https://doi.org/10.1016/j.plaphy.2021.05.049.
Wang, L.W., Showalter, A.M. and Ungar, I.A. (1997) ‘Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae)’, American Journal of Botany, 84(9), pp. 1247–1255. Available at: https://doi.org/10.2307/2446049.
Wang, T., McFarlane, H.E. and Persson, S. (2016) ‘The impact of abiotic factors on cellulose synthesis’, Journal of Experimental Botany, 67(2), pp. 543–552. Available at: https://doi.org/10.1093/jxb/erv488.
Wang, Yanting, Huang, J., Li, Y., Xiong, K., Wang, Youmei, Li, F., Liu, M., Wu, Z., Tu, Y. and Peng, L. (2015) ‘Ammonium oxalate‐extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus’, Bioresource Technology, 196, pp. 391–398. Available at: https://doi.org/10.1016/j.biortech.2015.07.099.
van derWeijde, T., Huxley, L.M., Hawkins, S., Sembiring, E.H., Farrar, K., Dolstra, O., Visser, R.G.F. and Trindade, L.M. (2017) ‘Impact of drought stress on growth and quality of Miscanthus for biofuel production’, GCB Bioenergy, 9(4), pp. 770–782. Available at: https://doi.org/10.1111/gcbb.12382.
van derWeijde, T., Kiesel, A., Iqbal, Y., Muylle, H., Dolstra, O., Visser, R.G.F., Lewandowski, I. and Trindade, L.M. (2017) ‘Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products’, GCB Bioenergy, 9(1), pp. 176–190. Available at: https://doi.org/10.1111/gcbb.12355.
van derWeijde, T., Torres, A.F., Dolstra, O., Dechesne, A., Visser, R.G.F. and Trindade, L.M. (2016) ‘Impact of Different Lignin Fractions on Saccharification Efficiency in Diverse Species of the Bioenergy Crop Miscanthus’, Bioenergy Research, 9(1), pp. 146–156. Available at: https://doi.org/10.1007/s12155-015-9669-z.
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer‐VerlagNew York. Available at: https://ggplot2.tidyverse.org.
Yasuda, S., Fukushima, K. and Kakehi, A. (2001) ‘Formation and chemical structures of acid‐soluble lignin I: Sulfuric acid treatment time and acid‐soluble lignin content of hardwood’, Journal of Wood Science, 47(1), pp. 69–72. Available at: https://doi.org/10.1007/BF00776648.
Yuan, Y., Liu, C., Gao, Y., Ma, Q., Yang, Q. and Feng, B. (2021) ‘Proso millet (Panicum miliaceum L.): A potential crop to meet demand scenario for sustainable saline agriculture’, Journal of Environmental Management, 296(June), p. 113216. Available at: https://doi.org/10.1016/j.jenvman.2021.113216.
Yuan, Y.H., Li, J., Ma, H.C., Yang, Q.H., Liu, C.J. and Feng, B.L. (2021) ‘Salt‐tolerant broomcorn millet (Panicum miliaceum L.) resists salt stress via modulation of cell wall biosynthesis and Na+ balance’, Land Degradation and Development, 32(1), pp. 518–532. Available at: https://doi.org/10.1002/ldr.3717.
Zhao, C., Zhang, H., Song, C., Zhu, J.‐K. and Shabala, S. (2020) ‘Mechanisms of Plant Responses and Adaptation to Soil Salinity’, The Innovation, 1(1), p. 100017. Available at: https://doi.org/https://doi.org/10.1016/j.xinn.2020.100017.
Zheng, C., Xiao, L., Iqbal, Y., Sun, G., Feng, H., Liu, F., Duan, M. and Yi, Z. (2022) ‘Miscanthus interspecific hybrids exceed the biomass yield and quality of their parents in the saline–alkaline Yellow River delta’, Food and Energy Security, 11(1), pp. 1–14. Available at: https://doi.org/10.1002/fes3.347.
Zheng, C., Yi, Z., Xiao, L., Sun, G., Li, M., Xue, S., Peng, X., Duan, M. and Chen, Z. (2022) ‘The performance of Miscanthus hybrids in saline‐alkaline soil’, Frontiers in Plant Science, 13. Available at: https://doi.org/10.3389/fpls.2022.921824.
Zörb, C., Geilfus, C.M. and Dietz, K.J. (2019) ‘Salinity and crop yield’, Plant Biology, 21, pp. 31–38. Available at: https://doi.org/10.1111/plb.12884.
معلومات مُعتمدة: 745012 HORIZON EUROPE Innovative Europe
المشرفين على المادة: 9005-53-2 (Lignin)
89NA02M4RX (Pectins)
9004-34-6 (Cellulose)
451W47IQ8X (Sodium Chloride)
تواريخ الأحداث: Date Created: 20240709 Date Completed: 20240709 Latest Revision: 20240709
رمز التحديث: 20240710
DOI: 10.1111/ppl.14430
PMID: 38981734
قاعدة البيانات: MEDLINE
الوصف
تدمد:1399-3054
DOI:10.1111/ppl.14430