دورية أكاديمية

Differentiation in detoxification gene complements, including neofunctionalization of duplicated cytochrome P450 genes, between lineages of cotton bollworm, Helicoverpa armigera.

التفاصيل البيبلوغرافية
العنوان: Differentiation in detoxification gene complements, including neofunctionalization of duplicated cytochrome P450 genes, between lineages of cotton bollworm, Helicoverpa armigera.
المؤلفون: Zhang J; College of Plant Protection, Nanjing Agricultural University, Nanjing, China.; School of Wetlands, Yancheng Teachers University, Yancheng, China., Shi Y; College of Plant Protection, Nanjing Agricultural University, Nanjing, China., Yang Y; College of Plant Protection, Nanjing Agricultural University, Nanjing, China., Oakeshott JG; Applied Biosciences, Macquarie University, Sydney, New South Wales, Australia., Wu Y; College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
المصدر: Molecular ecology [Mol Ecol] 2024 Aug; Vol. 33 (16), pp. e17463. Date of Electronic Publication: 2024 Jul 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Cytochrome P-450 Enzyme System*/genetics , Helicoverpa armigera*/enzymology , Helicoverpa armigera*/genetics, Animals ; China ; Evolution, Molecular ; Gene Duplication ; Inactivation, Metabolic/genetics ; Phylogeny
مستخلص: Here we investigate the evolutionary dynamics of five enzyme superfamilies (CYPs, GSTs, UGTs, CCEs and ABCs) involved in detoxification in Helicoverpa armigera. The reference assembly for an African isolate of the major lineages, H. a. armigera, has 373 genes in the five superfamilies. Most of its CYPs, GSTs, UGTs and CCEs and a few of its ABCs occur in blocks and most of the clustered genes are in subfamilies specifically implicated in detoxification. Most of the genes have orthologues in the reference genome for the Oceania lineage, H. a. conferta. However, clustered orthologues and subfamilies specifically implicated in detoxification show greater sequence divergence and less constraint on non-synonymous differences between the two assemblies than do other members of the five superfamilies. Two duplicated CYPs, which were found in the H. a. armigera but not H. a. conferta reference genome, were also missing in 16 Chinese populations spanning two different lineages of H. a. armigera. The enzyme produced by one of these duplicates has higher activity against esfenvalerate than a previously described chimeric CYP mutant conferring pyrethroid resistance. Various transposable elements were found in the introns of most detoxification genes, generating diverse gene structures. Extensive resequencing data for the Chinese H. a. armigera and H. a. conferta lineages also revealed complex copy number polymorphisms in 17 CCE001s in a cluster also implicated in pyrethroid metabolism, with substantial haplotype differences between all three lineages. Our results suggest that cotton bollworm has a versatile complement of detoxification genes which are evolving in diverse ways across its range.
(© 2024 John Wiley & Sons Ltd.)
References: Anderson, C. J., Oakeshott, J. G., Tay, W. T., Gordon, K. H. J., Zwick, A., & Walsh, T. K. (2018). Hybridization and gene flow in the mega‐pest lineage of moth, Helicoverpa. Proceedings of the National Academy of Sciences of the United States of America, 115(19), 5034–5039. https://doi.org/10.1073/pnas.1718831115.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.
Breeschoten, T., Van Der Linden, C. F. H., Ros, V. I. D., Schranz, M. E., & Simon, S. (2022). Expanding the menu: Are polyphagy and gene family expansions linked across lepidoptera? Genome Biology and Evolution, 14(1), evab283. https://doi.org/10.1093/gbe/evab283.
Broehan, G., Kroeger, T., Lorenzen, M., & Merzendorfer, H. (2013). Functional analysis of the ATP‐binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics, 14(1), 6. https://doi.org/10.1186/1471‐2164‐14‐6.
Brun‐Barale, A., Héma, O., Martin, T., Suraporn, S., Audant, P., Sezutsu, H., & Feyereisen, R. (2010). Multiple P450 genes overexpressed in deltamethrin‐resistant strains of Helicoverpa armigera. Pest Management Science, 66(8), 900–909. https://doi.org/10.1002/ps.1960.
Calla, B., Noble, K., Johnson, R. M., Walden, K. K. O., Schuler, M. A., Robertson, H. M., & Berenbaum, M. R. (2017). Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: Birth, death and adaptation. Molecular Ecology, 26(21), 6021–6035. https://doi.org/10.1111/mec.14348.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 421. https://doi.org/10.1186/1471‐2105‐10‐421.
Chahine, S., & O'Donnell, M. J. (2011). Interactions between detoxification mechanisms and excretion in Malpighian tubules of Drosophila melanogaster. Journal of Experimental Biology, 214(3), 462–468. https://doi.org/10.1242/jeb.048884.
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009.
Chen, S., & Li, X. (2007). Transposable elements are enriched within or in close proximity to xenobiotic‐metabolizing cytochrome P450 genes. BMC Evolutionary Biology, 7(1), 46. https://doi.org/10.1186/1471‐2148‐7‐46.
Cheng, T., Wu, J., Wu, Y., Chilukuri, R. V., Huang, L., Yamamoto, K., Feng, L., Li, W., Chen, Z., Guo, H., Liu, J., Li, S., Wang, X., Peng, L., Liu, D., Guo, Y., Fu, B., Li, Z., Liu, C., … Mita, K. (2017). Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nature Ecology & Evolution, 1(11), 1747–1756. https://doi.org/10.1038/s41559‐017‐0314‐4.
Claudianos, C., Russell, R. J., & Oakeshott, J. G. (1999). The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochemistry and Molecular Biology, 29(8), 675–686. https://doi.org/10.1016/S0965‐1748(99)00035‐1.
Dermauw, W., Van Leeuwen, T., & Feyereisen, R. (2020). Diversity and evolution of the P450 family in arthropods. Insect Biochemistry and Molecular Biology, 127, 103490. https://doi.org/10.1016/j.ibmb.2020.103490.
Devonshire, A. L., Field, L. M., Foster, S. P., Moores, G. D., Williamson, M. S., & Blackman, R. L. (1998). The evolution of insecticide resistance in the peach‐potato aphid, Myzus persicae. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1376), 1677–1684. https://doi.org/10.1098/rstb.1998.0318.
Dunn, N. A., Unni, D. R., Diesh, C., Munoz‐Torres, M., Harris, N. L., Yao, E., Rasche, H., Holmes, I. H., Elsik, C. G., & Lewis, S. E. (2019). Apollo: Democratizing genome annotation. PLoS Computational Biology, 15(2), e1006790. https://doi.org/10.1371/journal.pcbi.1006790.
El‐Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E., & Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995.
Faucon, F., Dusfour, I., Gaude, T., Navratil, V., Boyer, F., Chandre, F., Sirisopa, P., Thanispong, K., Juntarajumnong, W., Poupardin, R., Chareonviriyaphap, T., Girod, R., Corbel, V., Reynaud, S., & David, J.‐P. (2015). Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Research, 25(9), 1347–1359. https://doi.org/10.1101/gr.189225.115.
Ffrench‐Constant, R. H. (2023). Transposable elements and xenobiotic resistance. Frontiers in Insect Science, 3, 1178212. https://doi.org/10.3389/finsc.2023.1178212.
Field, L. M., Blackman, R. L., Tyler‐Smith, C., & Devonshire, A. L. (1999). Relationship between amount of esterase and gene copy number in insecticide‐resistant Myzus persicae (Sulzer). The Biochemical Journal, 339(Pt 3), 737–742.
Gremme, G., Brendel, V., Sparks, M. E., & Kurtz, S. (2005). Engineering a software tool for gene structure prediction in higher organisms. Information and Software Technology, 47(15), 965–978. https://doi.org/10.1016/j.infsof.2005.09.005.
Guindon, S., Dufayard, J.‐F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum‐likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010.
Gunning, R. V., Easton, C. S., Balfe, M. E., & Ferris, I. G. (1991). Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pesticide Science, 33(4), 473–490. https://doi.org/10.1002/ps.2780330410.
Han, Y., Yu, W., Zhang, W., Yang, Y., Walsh, T., Oakeshott, J. G., & Wu, Y. (2015). Variation in P450‐mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 121, 129–135. https://doi.org/10.1016/j.pestbp.2014.12.004.
Handsaker, R. E., Van Doren, V., Berman, J. R., Genovese, G., Kashin, S., Boettger, L. M., & McCarroll, S. A. (2015). Large multiallelic copy number variations in humans. Nature Genetics, 47(3), 296–303. https://doi.org/10.1038/ng.3200.
Hartley, C. J., Newcomb, R. D., Russell, R. J., Yong, C. G., Stevens, J. R., Yeates, D. K., La Salle, J., & Oakeshott, J. G. (2006). Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8757–8762. https://doi.org/10.1073/pnas.0509590103.
Head, D. J., McCaffery, A. R., & Callaghan, A. (1998). Novel mutations in the para‐homologous sodium channel gene associated with phenotypic expression of nerve insensitivity resistance to pyrethroids in Heliothine lepidoptera. Insect Molecular Biology, 7, 191–196.
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281.
Hopkins, D. H., Rane, R. V., Younus, F., Coppin, C. W., Pandey, G., Jackson, C. J., & Oakeshott, J. G. (2019). The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in drosophila. Insect Biochemistry and Molecular Biology, 106, 10–18. https://doi.org/10.1016/j.ibmb.2019.01.001.
Jackson, C. J., Liu, J.‐W., Carr, P. D., Younus, F., Coppin, C., Meirelles, T., Lethier, M., Pandey, G., Ollis, D. L., Russell, R. J., Weik, M., & Oakeshott, J. G. (2013). Structure and function of an insect α‐carboxylesterase (α Esterase 7) associated with insecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10177–10182. https://doi.org/10.1073/pnas.1304097110.
Jin, M., North, H. L., Peng, Y., Liu, H., Liu, B., Pan, R., Zhou, Y., Zheng, W., Liu, K., Yang, B., Zhang, L., Xu, Q., Elfekih, S., Valencia‐Montoya, W. A., Walsh, T., Cui, P., Zhou, Y., Wilson, K., Jiggins, C., … Xiao, Y. (2023). Adaptive evolution to the natural and anthropogenic environment in a global invasive crop pest, the cotton bollworm. The Innovation, 4(4), 100454. https://doi.org/10.1016/j.xinn.2023.100454.
Jin, M., Peng, Y., Peng, J., Zhang, H., Shan, Y., Liu, K., & Xiao, Y. (2023). Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (lepidoptera: Noctuidae). Communications Biology, 6(1), 1064. https://doi.org/10.1038/s42003‐023‐05447‐0.
Joußen, N., Agnolet, S., Lorenz, S., Schöne, S. E., Ellinger, R., Schneider, B., & Heckel, D. G. (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15206–15211. https://doi.org/10.1073/pnas.1202047109.
Joußen, N., & Heckel, D. G. (2021). Saltational evolution of a pesticide‐metabolizing cytochrome P450 in a global crop pest. Pest Management Science, 77(7), 3325–3332. https://doi.org/10.1002/ps.6376.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010.
Kim, J., Rahman, M.‐M., Han, C., Jeon, J., Kwon, M., Lee, S. H., & Omoto, C. (2023). Genome‐wide exploration of metabolic‐based pyrethroid resistance mechanism in Helicoverpa armigera [Research Square]. https://doi.org/10.21203/rs.3.rs‐3750830/v1.
Krempl, C., Sporer, T., Reichelt, M., Ahn, S.‐J., Heidel‐Fischer, H., Vogel, H., Heckel, D. G., & Joußen, N. (2016). Potential detoxification of gossypol by UDP‐glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 71, 49–57. https://doi.org/10.1016/j.ibmb.2016.02.005.
Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52(1), 231–253. https://doi.org/10.1146/annurev.ento.51.110104.151104.
Li, Z., Zhang, Z., Zhang, L., & Leng, L. (2009). Isomer‐ and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils. Chemosphere, 76(4), 509–516. https://doi.org/10.1016/j.chemosphere.2009.03.015.
Lo, H.‐R., & Chao, Y.‐C. (2004). Rapid titer determination of baculovirus by quantitative real‐time polymerase chain reaction. Biotechnology Progress, 20(1), 354–360. https://doi.org/10.1021/bp034132i.
Lucas, E. R., Miles, A., Harding, N. J., Clarkson, C. S., Lawniczak, M. K. N., Kwiatkowski, D. P., Weetman, D., Donnelly, M. J., & The Anopheles gambiae 1000 Genomes Consortium. (2019). Whole‐genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Research, 29(8), 1250–1261. https://doi.org/10.1101/gr.245795.118.
Martin, T., Ochou, G. O., Hala‐N'Klo, F., Vassal, J.‐M., & Vaissayre, M. (2000). Pyrethroid resistance in the cotton bollworm, Helicoverpa armigera (Hübner), in West Africa. Pest Management Science, 56(6), 549–554. https://doi.org/10.1093/jee/96.2.468.
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ‐TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015.
Nauen, R., Bass, C., Feyereisen, R., & Vontas, J. (2022). The role of cytochrome P450s in insect toxicology and resistance. Annual Review of Entomology, 67(1), 105–124. https://doi.org/10.1146/annurev‐ento‐070621‐061328.
Newcomb, R. D., Gleeson, D. M., Yong, C. G., Russell, R. J., & Oakeshott, J. G. (2005). Multiple mutations and gene duplications conferring organophosphorus insecticide resistance have been selected at the Rop‐1 locus of the sheep blowfly, Lucilia cuprina. Journal of Molecular Evolution, 60(2), 207–220. https://doi.org/10.1007/s00239‐004‐0104‐x.
Ni, R., Wang, Y., Zhong, Q., Li, M., Zhang, D., Zhang, Y., & Qiu, X. (2023). Absence of known knockdown resistance mutations but fixation of CYP337B3 was detected in field populations of Helicoverpa armigera across China. Pesticide Biochemistry and Physiology, 195, 105542. https://doi.org/10.1016/j.pestbp.2023.105542.
Oakeshott, J. G., Farnsworth, C. A., East, P. D., Scott, C., Han, Y., Wu, Y., & Russell, R. J. (2013). How many genetic options for evolving insecticide resistance in heliothine and spodopteran pests? Pest Management Science, 69(8), 889–896. https://doi.org/10.1002/ps.3542.
Omura, T., & Sato, R. (1964). The carbon monoxide‐binding pigment of liver microsomes. Journal of Biological Chemistry, 239(7), 2370–2378. https://doi.org/10.1016/S0021‐9258(20)82244‐3.
Pearce, S. L., Clarke, D. F., East, P. D., Elfekih, S., Gordon, K. H. J., Jermiin, L. S., McGaughran, A., Oakeshott, J. G., Papanikolaou, A., Perera, O. P., Rane, R. V., Richards, S., Tay, W. T., Walsh, T. K., Anderson, A., Anderson, C. J., Asgari, S., Board, P. G., Bretschneider, A., … Wu, Y. D. (2017). Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 15(1), 63. https://doi.org/10.1186/s12915‐017‐0402‐6.
Pertea, G., & Pertea, M. (2020). GFF utilities: GffRead and GffCompare. F1000Research, 9, 304. https://doi.org/10.12688/f1000research.23297.1.
Qiu, Y., Tittiger, C., Wicker‐Thomas, C., Le Goff, G., Young, S., Wajnberg, E., Fricaux, T., Taquet, N., Blomquist, G. J., & Feyereisen, R. (2012). An insect‐specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 14858–14863. https://doi.org/10.1073/pnas.1208650109.
Rane, R. V., Clarke, D. F., Pearce, S. L., Zhang, G., Hoffmann, A. A., & Oakeshott, J. G. (2019). Detoxification genes differ between cactus‐, fruit‐, and flower‐feeding Drosophila. Journal of Heredity, 110(1), 80–91. https://doi.org/10.1093/jhered/esy058.
Rane, R. V., Ghodke, A. B., Hoffmann, A. A., Edwards, O. R., Walsh, T. K., & Oakeshott, J. G. (2019). Detoxifying enzyme complements and host use phenotypes in 160 insect species. Current Opinion in Insect Science, 31, 131–138. https://doi.org/10.1016/j.cois.2018.12.008.
Rasool, A., Joußen, N., Lorenz, S., Ellinger, R., Schneider, B., Khan, S. A., Ashfaq, M., & Heckel, D. G. (2014). An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan. Insect Biochemistry and Molecular Biology, 53, 54–65. https://doi.org/10.1016/j.ibmb.2014.07.006.
Schmidt, J. M., Good, R. T., Appleton, B., Sherrard, J., Raymant, G. C., Bogwitz, M. R., Martin, J., Daborn, P. J., Goddard, M. E., Batterham, P., & Robin, C. (2010). Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genetics, 6(6), e1000998. https://doi.org/10.1371/journal.pgen.1000998.
Schwartz, M., Boichot, V., Fraichard, S., Muradova, M., Senet, P., Nicolai, A., Lirussi, F., Bas, M., Canon, F., Heydel, J.‐M., & Neiers, F. (2023). Role of insect and mammal glutathione transferases in chemoperception. Biomolecules, 13(2), 322. https://doi.org/10.3390/biom13020322.
Shen, W., Le, S., Li, Y., & Hu, F. (2016). SeqKit: A cross‐platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One, 11(10), e0163962. https://doi.org/10.1371/journal.pone.0163962.
Shi, Y., Liu, Q., Lu, W., Yuan, J., Yang, Y., Oakeshott, J., & Wu, Y. (2023). Divergent amplifications of CYP9A cytochrome P450 genes provide two noctuid pests with differential protection against xenobiotics. Proceedings of the National Academy of Sciences of the United States of America, 120(37), e2308685120. https://doi.org/10.1073/pnas.2308685120.
Shi, Y., Wang, H., Liu, Z., Wu, S., Yang, Y., Feyereisen, R., Heckel, D. G., & Wu, Y. (2018). Phylogenetic and functional characterization of ten P450 genes from the CYP6AE subfamily of Helicoverpa armigera involved in xenobiotic metabolism. Insect Biochemistry and Molecular Biology, 93, 79–91. https://doi.org/10.1016/j.ibmb.2017.12.006.
Song, S. V., Anderson, C., Good, R. T., Leslie, S., Wu, Y., Oakeshott, J. G., & Robin, C. (2018). Population differentiation between Australian and Chinese Helicoverpa armigera occurs in distinct blocks on the Z‐chromosome. Bulletin of Entomological Research, 108(6), 817–830. https://doi.org/10.1017/S0007485318000081.
Teese, M. G., Farnsworth, C. A., Li, Y., Coppin, C. W., Devonshire, A. L., Scott, C., East, P., Russell, R. J., & Oakeshott, J. G. (2013). Heterologous expression and biochemical characterisation of fourteen esterases from Helicoverpa armigera. PLoS One, 8(6), e65951. https://doi.org/10.1371/journal.pone.0065951.
Valencia‐Montoya, W. A., Elfekih, S., North, H. L., Meier, J. I., Warren, I. A., Tay, W. T., Gordon, K. H. J., Specht, A., Paula‐Moraes, S. V., Rane, R., Walsh, T. K., & Jiggins, C. D. (2020). Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths. Molecular Biology and Evolution, 37(9), 2568–2583. https://doi.org/10.1093/molbev/msaa108.
Walsh, T. K., Heckel, D. G., Wu, Y., Downes, S., Gordon, K. H. J., & Oakeshott, J. G. (2022). Determinants of insecticide resistance evolution: Comparative analysis among Heliothines. Annual Review of Entomology, 67(1), 387–406. https://doi.org/10.1146/annurev‐ento‐080421‐071655.
Walsh, T. K., Joussen, N., Tian, K., McGaughran, A., Anderson, C. J., Qiu, X., Ahn, S.‐J., Bird, L., Pavlidi, N., Vontas, J., Ryu, J., Rasool, A., Barony Macedo, I., Tay, W. T., Zhang, Y., Whitehouse, M. E. A., Silvie, P. J., Downes, S., Nemec, L., & Heckel, D. G. (2018). Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLoS One, 13(11), e0197760. https://doi.org/10.1371/journal.pone.0197760.
Wang, H., Shi, Y., Wang, L., Liu, S., Wu, S., Yang, Y., Feyereisen, R., & Wu, Y. (2018). CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nature Communications, 9(1), 4820. https://doi.org/10.1038/s41467‐018‐07226‐6.
Wang, Q., Rui, C., Wang, L., Nahiyoon, S. A., Huang, W., Zhu, J., Ji, X., Yang, Q., Yuan, H., & Cui, L. (2021). Field‐evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (lepidoptera: Noctuidae). Pest Management Science, 77(11), 5086–5095. https://doi.org/10.1002/ps.6548.
Wang, X., Zheng, Z., Cai, Y., Chen, T., Li, C., Fu, W., & Jiang, Y. (2017). CNVcaller: Highly efficient and widely applicable software for detecting copy number variations in large populations. GigaScience, 6(12), 1–12. https://doi.org/10.1093/gigascience/gix115.
Weill, M., Berticat, C., Raymond, M., & Chevillon, C. (2000). Quantitative polymerase chain reaction to estimate the number of amplified esterase genes in insecticide‐resistant mosquitoes. Analytical Biochemistry, 285(2), 267–270. https://doi.org/10.1006/abio.2000.4781.
Wu, K. M., & Guo, Y. Y. (2005). The evolution of cotton pest management practices in China. Annual Review of Entomology, 50(1), 31–52. https://doi.org/10.1146/annurev.ento.50.071803.130349.
Wu, S., Yang, Y., Yuan, G., Campbell, P. M., Teese, M. G., Russell, R. J., Oakeshott, J. G., & Wu, Y. (2011). Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 41(1), 14–21. https://doi.org/10.1016/j.ibmb.2010.09.007.
Xiao, H., Ye, X., Xu, H., Mei, Y., Yang, Y., Chen, X., Yang, Y., Liu, T., Yu, Y., Yang, W., Lu, Z., & Li, F. (2020). The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Molecular Ecology Resources, 20(4), 1050–1068. https://doi.org/10.1111/1755‐0998.13182.
Xu, S., Dai, Z., Guo, P., Fu, X., Liu, S., Zhou, L., Tang, W., Feng, T., Chen, M., Zhan, L., Wu, T., Hu, E., Jiang, Y., Bo, X., & Yu, G. (2021). ggtreeExtra: Compact visualization of richly annotated phylogenetic data. Molecular Biology and Evolution, 38(9), 4039–4042. https://doi.org/10.1093/molbev/msab166.
Yang, Y., Li, Y., & Wu, Y. (2013). Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. Journal of Economic Entomology, 106(1), 375–381. https://doi.org/10.1603/EC12286.
Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. (2017). Ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. https://doi.org/10.1111/2041‐210X.12628.
Zhang, J., Zhang, F., Tay, W. T., Robin, C., Shi, Y., Guan, F., Yang, Y., & Wu, Y. (2022). Population genomics provides insights into lineage divergence and local adaptation within the cotton bollworm. Molecular Ecology Resources, 22(5), 1875–1891. https://doi.org/10.1111/1755‐0998.13581.
Zuo, Y., Shi, Y., Zhang, F., Guan, F., Zhang, J., Feyereisen, R., Fabrick, J. A., Yang, Y., & Wu, Y. (2021). Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm. PLoS Genetics, 17(7), e1009680. https://doi.org/10.1371/journal.pgen.1009680.
معلومات مُعتمدة: 2022YFD1400901 National Key Research and Development Program of China
فهرسة مساهمة: Keywords: CYP337B subfamily; carboxyl/cholinesterase; cotton bollworm; detoxification gene; esfenvalerate metabolism; gene evolution
سلسلة جزيئية: RefSeq HQ116527; KM675664
المشرفين على المادة: 9035-51-2 (Cytochrome P-450 Enzyme System)
تواريخ الأحداث: Date Created: 20240710 Date Completed: 20240806 Latest Revision: 20240806
رمز التحديث: 20240806
DOI: 10.1111/mec.17463
PMID: 38984610
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.17463