دورية أكاديمية

Bioengineered niches that recreate physiological extracellular matrix organisation to support long-term haematopoietic stem cells.

التفاصيل البيبلوغرافية
العنوان: Bioengineered niches that recreate physiological extracellular matrix organisation to support long-term haematopoietic stem cells.
المؤلفون: Donnelly H; Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom., Ross E; Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom., Xiao Y; Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom., Hermantara R; School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom., Taqi AF; School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom., Doherty-Boyd WS; Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom., Cassels J; School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom., Tsimbouri PM; Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom., Dunn KM; School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom., Hay J; School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom., Cheng A; Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom., Meek RMD; Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, United Kingdom., Jain N; Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom., West C; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom., Wheadon H; School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom., Michie AM; School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom., Peault B; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom., West AG; School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom., Salmeron-Sanchez M; Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom. manuel.salmeron-sanchez@glasgow.ac.uk., Dalby MJ; Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom. matthew.dalby@glasgow.ac.uk.
المصدر: Nature communications [Nat Commun] 2024 Jul 10; Vol. 15 (1), pp. 5791. Date of Electronic Publication: 2024 Jul 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Hematopoietic Stem Cells*/metabolism , Hematopoietic Stem Cells*/cytology , Nestin*/metabolism , Nestin*/genetics , Extracellular Matrix*/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit*/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit*/genetics, Animals ; Mice ; Stem Cell Niche ; Hydrogels/chemistry ; Bioengineering/methods ; Humans ; Mesenchymal Stem Cells/metabolism ; Mesenchymal Stem Cells/cytology ; Hematopoietic Stem Cell Transplantation ; Antigens, CD34/metabolism ; Collagen Type I/metabolism ; Cell Differentiation ; Mice, Inbred C57BL
مستخلص: Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34 +ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.
(© 2024. The Author(s).)
References: Burns, R., Leal, J., Sullivan, R. & Luengo-Fernandez, R. Economic burden of malignant blood disorders across Europe: a population-based cost analysis. Lancet Haematol. 3, e362–e370 (2016). (PMID: 2747678710.1016/S2352-3026(16)30062-X)
Granot, N. & Storb, R. History of hematopoietic cell transplantation: challenges and progress. Haematologica 105, 2716–2729 (2020). (PMID: 33054108771637310.3324/haematol.2019.245688)
State of the Registry 2020–2021. In: Anthony Nolan NHS Stem Cell Registry Annual Review 1–10 https://www.anthonynolan.org/sites/default/files/2022-06/State%20of%20The%20Registry%202020-2021.pdf (2022).
Zon, L. I. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453, 306–313 (2008). (PMID: 1848081110.1038/nature07038)
Yang, L. et al. Identification of Lin-Sca1+kit+CD34 +Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105, 2717–2723 (2005). (PMID: 1557259610.1182/blood-2004-06-2159)
Dexter, T., Moore, M. A. & Sheridan, A. P. Maintenance of hemopoietic stem cells and production of differentiated progeny in allogeneic and semiallogeneic bone marrow chimeras in vitro. J. Exp. Med. 145, 1612–1616 (1977). (PMID: 32517110.1084/jem.145.6.1612)
Nakauchi, H., Sudo, K. & Hideo, E. M. A. Quantitative assessment of the stem cell self-renewal capacity. Ann. N. Y. Acad. Sci. 938, 18–25 (2001). (PMID: 1145850610.1111/j.1749-6632.2001.tb03570.x)
Li, J. et al. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Acta Pharm. Sin. B 12, 2808–2831 (2021). (PMID: 35755294921406510.1016/j.apsb.2021.12.006)
Fares, I. et al. EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 129, 3344–3351 (2017). (PMID: 2840845910.1182/blood-2016-11-750729)
Wagner, J. E. et al. Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 18, 144–155 (2016). (PMID: 2666989710.1016/j.stem.2015.10.004)
Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0103-9 (2019).
Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010). (PMID: 20703299314655110.1038/nature09262)
Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013). (PMID: 24107994382187310.1038/nature12612)
Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013). (PMID: 23434755360015310.1038/nature11885)
Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007). (PMID: 1795673310.1016/j.cell.2007.08.025)
Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008). (PMID: 1878641710.1016/j.stem.2008.07.003)
Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006). (PMID: 1717412010.1016/j.immuni.2006.10.016)
Pinho, S. et al. PDGFR A and CD51 mark human stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210, 1351–1367 (2013). (PMID: 23776077369852210.1084/jem.20122252)
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). (PMID: 1692338810.1016/j.cell.2006.06.044)
Chen, X. et al. Mechanical heterogeneity in the bone microenvironment as characterized by atomic force microscopy. Biophys. J. 119, 502–513 (2020). (PMID: 32668233740103410.1016/j.bpj.2020.06.026)
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003). (PMID: 1457441310.1038/nature02040)
Shen, B. et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438–444 (2021).
Salmerón-Sánchez, M. & Dalby, M. J. Synergistic growth factor microenvironments. Chem. Commun. 52, 13327–13336 (2016). (PMID: 10.1039/C6CC06888J)
Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014). (PMID: 24590072398435310.1038/nature13034)
Estrada, J. C. et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ. 19, 743–755 (2012). (PMID: 2213912910.1038/cdd.2011.172)
Guarnerio, J. et al. Bone marrow endosteal mesenchymal progenitors depend on HIF factors for maintenance and regulation of hematopoiesis. Stem Cell Rep. 2, 794–809 (2014). (PMID: 10.1016/j.stemcr.2014.04.002)
Nakahara, F. et al. Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat. Cell Biol. 21, 560–567 (2019). (PMID: 30988422649964610.1038/s41556-019-0308-3)
Leisten, I. et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 33, 1736–1747 (2012). (PMID: 2213671310.1016/j.biomaterials.2011.11.034)
Gilchrist, A. E. & Harley, B. A. C. Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integr. Biol. 12, 175–187 (2020). (PMID: 10.1093/intbio/zyaa013)
Bourgine, P. E. et al. In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proc. Natl. Acad. Sci. 115, E5688–E5695 (2018). (PMID: 29866839601678910.1073/pnas.1805440115)
Rödling, L. et al. 3D models of the hematopoietic stem cell niche under steady-state and active conditions. Sci. Rep. 1–15 https://doi.org/10.1038/s41598-017-04808-0 (2017).
Chou, D. B. et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).
Doulatov, S., Notta, F., Laurenti, E. & Dick, J. E. Hematopoiesis: a human perspective. Cell Stem Cell 10, 120–136 (2012). (PMID: 2230556210.1016/j.stem.2012.01.006)
Klamer, S. & Voermans, C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh. Migr. 8, 563–577 (2014). (PMID: 25482635459452210.4161/19336918.2014.968501)
Llopis-hernández, V. et al. Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Sci. Adv. 1–11 https://doi.org/10.1126/sciadv.1600188 (2016).
Cheng, Z. A. et al. Nanoscale coatings for ultralow dose BMP-2-driven regeneration of critical-sized bone defects. Adv. Sci. 6, 1800361 (2018). (PMID: 10.1002/advs.201800361)
Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 1–19 https://doi.org/10.1038/nature17624 (2016).
Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. https://doi.org/10.1038/ncb3475 (2017).
Nilsson, S. K. et al. Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J. Histochem. Cytochem. 46, 371–377 (1998). (PMID: 948711910.1177/002215549804600311)
Choi, J. S. & Harley, B. A. C. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Sci. Adv. 3, e1600455 (2017). (PMID: 28070554521851410.1126/sciadv.1600455)
Früh, S. M., Schoen, I., Ries, J. & Vogel, V. Molecular architecture of native fibronectin fibrils. Nat. Commun. 6, 7275 (2015). (PMID: 2604141010.1038/ncomms8275)
Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl. Acad. Sci. USA 106, 18267–18272 (2009). (PMID: 19826086276124210.1073/pnas.0907518106)
Bieniek, M., Llopis-Hernandez, V., Douglas, K., Salmeron-Sanchez, M. & Lorenz, C. Minor chemistry changes alter surface hydration to control fibronectin adsorption and assembly into nanofibrils. Adv. Theory Simul. 1900169, 1–13 (2019).
Martino, M. M. & Hubbell, J. A. The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24, 4711–4721 (2010). (PMID: 20671107)
Park, D. et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28, 2162–2171 (2010). (PMID: 2096382110.1002/stem.541)
Coutu, D. L., Kokkaliaris, K. D., Kunz, L. & Schroeder, T. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nat. Biotechnol. 35, 1202–1210 (2017). (PMID: 2913114910.1038/nbt.4006)
Le Blanc, K. & Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383–396 (2012). (PMID: 2253132610.1038/nri3209)
Dorronsoro, A. et al. Intracellular role of IL-6 in mesenchymal stromal cell immunosuppression and proliferation. Sci. Rep. 10, 1–12 (2020). (PMID: 10.1038/s41598-020-78864-4)
Haghighitalab, A. et al. Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci. Rep. 11, 1–19 (2021). (PMID: 10.1038/s41598-021-87153-7)
He, Y. et al. Mesenchymal stem cell deficiency influences megakaryocytopoiesis through the TNFAIP3/NF-κB/SMAD pathway in patients with immune thrombocytopenia. Br. J. Haematol. 180, 395–411 (2018). (PMID: 2932747210.1111/bjh.15034)
Shen, S. P. et al. EphA2 is a biomarker of hMSCs derived from human placenta and umbilical cord. Taiwan. J. Obstet. Gynecol. 54, 749–756 (2015). (PMID: 2670099710.1016/j.tjog.2015.10.012)
Weidemann, A. & Johnson, R. S. Biology of HIF-1 a. Cell Death Differ. 15, 621–627 (2008). (PMID: 1825920110.1038/cdd.2008.12)
Pattappa, G., Heywood, H. K., de Bruijn, J. D. & Lee, D. A. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell. Physiol. 226, 2562–2570 (2011). (PMID: 2179291310.1002/jcp.22605)
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009). (PMID: 10.1126/science.1160809)
Sahlgren, C. M. et al. Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23, 5090–5106 (2003). (PMID: 1283249216222310.1128/MCB.23.14.5090-5106.2003)
Pallari, H.-M. et al. Nestin as a regulator of Cdk5 in differentiating myoblasts. Mol. Biol. Cell 22, 1539–1549 (2011). (PMID: 21346193308467610.1091/mbc.e10-07-0568)
Sahlgren, C. M. et al. A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J. 25, 4808–4819 (2006). (PMID: 17036052161810010.1038/sj.emboj.7601366)
Galleu, A. et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med. 9, 1–12 (2017). (PMID: 10.1126/scitranslmed.aam7828)
Shentu, Y. et al. Nestin promotes peritoneal fibrosis by protecting HIF1-α from proteasomal degradation. Front. Physiol. 11, 1–11 (2020). (PMID: 10.3389/fphys.2020.517912)
Van Galen, P. et al. Reduced lymphoid lineage priming promotes human hematopoietic stem cell expansion. Cell Stem Cell 14, 94–106 (2014). (PMID: 2438817410.1016/j.stem.2013.11.021)
Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776–783 (2019). (PMID: 30911135651298610.1038/s41591-019-0401-y)
Grassinger, J., Haylock, D. N., Williams, B., Olsen, G. H. & Nilsson, S. K. Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood 116, 3185–3196 (2010). (PMID: 2063137810.1182/blood-2009-12-260703)
Ross, E. A. et al. Nanotopography reveals metabolites that maintain the immunosuppressive phenotype of mesenchymal stem cells. Nat. Commun. 14, 753 (2023). (PMID: 36765065991853910.1038/s41467-023-36293-7)
Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008). (PMID: 1906208610.1016/j.cell.2008.10.048)
Crippa, S. et al. Erratum: mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs (Molecular Therapy, (S1525001622004993), (10.1016/j.ymthe.2022.08.011)). Mol. Ther. 30, 3333 (2022). (PMID: 36096132955281410.1016/j.ymthe.2022.09.005)
Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. https://doi.org/10.1038/nmat4489 (2015).
Kaufmann, K. B. et al. A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness. Nat. Immunol. 22, 723–734 (2021). (PMID: 3395878410.1038/s41590-021-00925-1)
García-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850.e10 (2021). (PMID: 3434349210.1016/j.stem.2021.07.003)
Napolitano, G. & Ballabio, A. TFEB at a glance. J. Cell Sci. 129, 2475–2481 (2016). (PMID: 27252382495830010.1242/jcs.146365)
Hsu, C. C. et al. Biophysical regulations of epigenetic state and notch signaling in neural development using microgroove substrates. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.2c01996 (2022).
Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016). (PMID: 27548707512101310.1038/nmat4729)
Caiazzo, M. et al. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15, 344–352 (2016). (PMID: 2675265510.1038/nmat4536)
Nemec, S. & Kilian, K. A. Materials control of the epigenetics underlying cell plasticity. Nat. Rev. Mater. https://doi.org/10.1038/s41578-020-00238-z (2020).
Takayama, N. et al. The transition from quiescent to activated states in human hematopoietic stem cells is governed by dynamic 3D genome reorganization. Cell Stem Cell 28, 488–501.e10 (2021). (PMID: 3324241310.1016/j.stem.2020.11.001)
Nakagawa, R., Soh, J. W. & Michie, A. M. Subversion of protein kinase Cα signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Res. 66, 527–534 (2006). (PMID: 1639726910.1158/0008-5472.CAN-05-0841)
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10 (2011). (PMID: 10.14806/ej.17.1.200)
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 2704300210.1038/nbt.3519)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014). (PMID: 10.1186/s13059-014-0550-8)
Westrop, G. D. et al. Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine. PLoS One 12, e0189072 (2017). (PMID: 29267346573942210.1371/journal.pone.0189072)
Chokkathukalam, A. et al. MzMatch-ISO: An R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29, 281–283 (2013). (PMID: 2316205410.1093/bioinformatics/bts674)
Miller, P. H. et al. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors. Blood 121, 3–6 (2013). (PMID: 10.1182/blood-2012-09-456566)
Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, 1–8 (2014). (PMID: 10.1093/nar/gku936)
Xiao, Y. et al. Current insights into the bone marrow niche: from biology in vivo to bioengineering ex vivo. Biomaterials 286, 121568 (2022). (PMID: 3558047410.1016/j.biomaterials.2022.121568)
معلومات مُعتمدة: BB/N018419/1 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); EP/P001114/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC); MR/R005567/1 RCUK | Medical Research Council (MRC)
المشرفين على المادة: 0 (Nestin)
0 (Hypoxia-Inducible Factor 1, alpha Subunit)
0 (Hydrogels)
0 (Antigens, CD34)
0 (Collagen Type I)
تواريخ الأحداث: Date Created: 20240710 Date Completed: 20240710 Latest Revision: 20240714
رمز التحديث: 20240714
مُعرف محوري في PubMed: PMC11237034
DOI: 10.1038/s41467-024-50054-0
PMID: 38987295
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-50054-0