دورية أكاديمية

A first-in-class selective inhibitor of EGFR and PI3K offers a single-molecule approach to targeting adaptive resistance.

التفاصيل البيبلوغرافية
العنوان: A first-in-class selective inhibitor of EGFR and PI3K offers a single-molecule approach to targeting adaptive resistance.
المؤلفون: Whitehead CE; Department of Radiology, University of Michigan, Ann Arbor, MI, USA.; MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA., Ziemke EK; Department of Radiology, University of Michigan, Ann Arbor, MI, USA., Frankowski-McGregor CL; Department of Radiology, University of Michigan, Ann Arbor, MI, USA., Mumby RA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA., Chung J; Department of Radiology, University of Michigan, Ann Arbor, MI, USA., Li J; Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA., Osher N; Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA., Coker O; The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Baladandayuthapani V; Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA.; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA., Kopetz S; The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Sebolt-Leopold JS; Department of Radiology, University of Michigan, Ann Arbor, MI, USA. jssl@med.umich.edu.; MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA. jssl@med.umich.edu.; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA. jssl@med.umich.edu.; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA. jssl@med.umich.edu.
المصدر: Nature cancer [Nat Cancer] 2024 Jul 11. Date of Electronic Publication: 2024 Jul 11.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101761119 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2662-1347 (Electronic) Linking ISSN: 26621347 NLM ISO Abbreviation: Nat Cancer Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2020]-
مستخلص: Despite tremendous progress in precision oncology, adaptive resistance mechanisms limit the long-term effectiveness of molecularly targeted agents. Here we evaluated the pharmacological profile of MTX-531 that was computationally designed to selectively target two key resistance drivers, epidermal growth factor receptor and phosphatidylinositol 3-OH kinase (PI3K). MTX-531 exhibits low-nanomolar potency against both targets with a high degree of specificity predicted by cocrystal structural analyses. MTX-531 monotherapy uniformly resulted in tumor regressions of squamous head and neck patient-derived xenograft (PDX) models. The combination of MTX-531 with mitogen-activated protein kinase kinase or KRAS-G12C inhibitors led to durable regressions of BRAF-mutant or KRAS-mutant colorectal cancer PDX models, resulting in striking increases in median survival. MTX-531 is exceptionally well tolerated in mice and uniquely does not lead to the hyperglycemia commonly seen with PI3K inhibitors. Here, we show that MTX-531 acts as a weak agonist of peroxisome proliferator-activated receptor-γ, an attribute that likely mitigates hyperglycemia induced by PI3K inhibition. This unique feature of MTX-531 confers a favorable therapeutic index not typically seen with PI3K inhibitors.
(© 2024. The Author(s).)
References: Cohen, P., Cross, D. & Jänne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 20, 551–569 (2021). (PMID: 34002056812749610.1038/s41573-021-00195-4)
Labrie, M., Brugge, J. S., Mills, G. B. & Zervantonakis, I. K. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 22, 323–339 (2022). (PMID: 35264777914905110.1038/s41568-022-00454-5)
Yesilkanal, A. E., Johnson, G. L., Ramos, A. F. & Rosner, M. R. New strategies for targeting kinase networks in cancer. J. Biol. Chem. 297, 101128 (2021). (PMID: 34461089844905510.1016/j.jbc.2021.101128)
Elkabets, M. et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell 27, 533–546 (2015). (PMID: 25873175439891510.1016/j.ccell.2015.03.010)
D’Amato, V. et al. The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models. Br. J. Cancer 110, 2887–2895 (2014). (PMID: 24823695405605610.1038/bjc.2014.241)
Baselga, J. et al. Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J. Clin. Oncol. 23, 5568–5577 (2005). (PMID: 1600995010.1200/JCO.2005.07.119)
Lui, V. W. et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 3, 761–769 (2013). (PMID: 23619167371053210.1158/2159-8290.CD-13-0103)
Li, H. et al. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Mol. Cancer Res. 12, 571–582 (2014). (PMID: 24425785398942110.1158/1541-7786.MCR-13-0396)
Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021). (PMID: 34127844929773210.1038/s41573-021-00209-1)
Klinghammer, K. et al. Combination of copanlisib with cetuximab improves tumor response in cetuximab-resistant patient-derived xenografts of head and neck cancer. Oncotarget 11, 3688–3697 (2020). (PMID: 33110476756680610.18632/oncotarget.27763)
Razak, A. R. A. et al. Phase lb/ll study of the PI3Kα inhibitor BYL719 in combination with cetuximab in recurrent/metastatic squamous cell cancer of the head and neck (SCCHN). J. Clin. Oncol. 32, 6044 (2014). (PMID: 10.1200/jco.2014.32.15_suppl.6044)
Marret, G. et al. Phase I trial of copanlisib, a selective PI3K inhibitor, in combination with cetuximab in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Invest. New Drugs 39, 1641–1648 (2021). (PMID: 3432277510.1007/s10637-021-01152-z)
Belmont, P. J. et al. Resistance to dual blockade of the kinases PI3K and mTOR in KRAS-mutant colorectal cancer models results in combined sensitivity to inhibition of the receptor tyrosine kinase EGFR. Sci. Signal. 7, ra107 (2014). (PMID: 2538937210.1126/scisignal.2005516)
Ebi, H. et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J. Clin. Invest. 121, 4311–4321 (2011). (PMID: 21985784320484210.1172/JCI57909)
Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012). (PMID: 2228168410.1038/nature10868)
Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012). (PMID: 22448344330819110.1158/2159-8290.CD-11-0341)
Caponigro, G. et al. Abstract 2337: efficacy of the RAF/PI3Kα/anti-EGFR triple combination LGX818 + BYL719 + cetuximab in BRAF V600E colorectal tumor models. Cancer Res. 73, 2337 (2013). (PMID: 10.1158/1538-7445.AM2013-2337)
Tabernero, J. et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E –mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J. Clin. Oncol. 39, 273–284 (2021). (PMID: 33503393807842310.1200/JCO.20.02088)
van Geel, R. et al. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov. 7, 610–619 (2017). (PMID: 28363909554620710.1158/2159-8290.CD-16-0795)
Tabernero, J. M. et al. Phase 2 results: encorafenib (ENCO) and cetuximab (CETUX) with or without alpelisib (ALP) in patients with advanced BRAF-mutant colorectal cancer (BRAFm CRC). J. Clin. Oncol. 34, 3544 (2016). (PMID: 10.1200/JCO.2016.34.15_suppl.3544)
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013). (PMID: 24256730427405110.1038/nature12796)
Yun, C. H. et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11, 217–227 (2007). (PMID: 17349580193994210.1016/j.ccr.2006.12.017)
Knight, S. D. et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett. 1, 39–43 (2010). (PMID: 24900173400779310.1021/ml900028r)
Munster, P. et al. First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin. Cancer Res. 22, 1932–1939 (2016). (PMID: 2660325810.1158/1078-0432.CCR-15-1665)
Baselga, J. et al. Using pharmacokinetic and pharmacodynamic data in early decision making regarding drug development: a phase I clinical trial evaluating tyrosine kinase inhibitor, AEE788. Clin. Cancer Res. 18, 6364–6372 (2012). (PMID: 2301452810.1158/1078-0432.CCR-12-1499)
Metz, K. et al. Coral: clear and customizable visualization of human kinome data. Cell Syst. 7, 347–350 (2018). (PMID: 30172842636632410.1016/j.cels.2018.07.001)
Will, M. et al. Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS–ERK signaling. Cancer Discov. 4, 334–347 (2014). (PMID: 24436048404952410.1158/2159-8290.CD-13-0611)
Sambandam, V. et al. PDK1 mediates NOTCH1-mutated head and neck squamous carcinoma vulnerability to therapeutic PI3K/mTOR inhibition. Clin. Cancer Res. 25, 3329–3340 (2019). (PMID: 30770351654860010.1158/1078-0432.CCR-18-3276)
Wang, Z. et al. Disruption of the HER3–PI3K–mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nat. Commun. 12, 2383 (2021). (PMID: 33888713806267410.1038/s41467-021-22619-w)
Kalyankrishna, S. & Grandis, J. R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol. 24, 2666–2672 (2006). (PMID: 1676328110.1200/JCO.2005.04.8306)
Molinolo, A. A. et al. Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin. Cancer Res. 13, 4964–4973 (2007). (PMID: 1778554610.1158/1078-0432.CCR-07-1041)
Iglesias-Bartolome, R., Martin, D. & Gutkind, J. S. Exploiting the head and neck cancer oncogenome: widespread PI3K–mTOR pathway alterations and novel molecular targets. Cancer Discov. 3, 722–725 (2013). (PMID: 23847349434807110.1158/2159-8290.CD-13-0239)
Amodio, V. et al. EGFR blockade reverts resistance to KRAS(G12C) inhibition in colorectal cancer. Cancer Discov. 10, 1129–1139 (2020). (PMID: 32430388741646010.1158/2159-8290.CD-20-0187)
Ryan, M. B. et al. KRAS G12C -independent feedback activation of wild-type RAS constrains KRAS G12C inhibitor efficacy. Cell Rep. 39, 110993 (2022). (PMID: 35732135980954210.1016/j.celrep.2022.110993)
Yaeger, R. et al. Molecular characterization of acquired resistance to KRAS G12C –EGFR inhibition in colorectal cancer. Cancer Discov. 13, 41–55 (2023). (PMID: 3635578310.1158/2159-8290.CD-22-0405)
Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018). (PMID: 30051890619705710.1038/s41586-018-0343-4)
Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77, 289–312 (2008). (PMID: 1851882210.1146/annurev.biochem.77.061307.091829)
Akhave, N. S., Biter, A. B. & Hong, D. S. Mechanisms of resistance to KRAS(G12C)-targeted therapy. Cancer Discov. 11, 1345–1352 (2021). (PMID: 33820777817817610.1158/2159-8290.CD-20-1616)
Misale, S. et al. KRAS G12C NSCLC models are sensitive to direct targeting of KRAS in combination with PI3K inhibition. Clin. Cancer Res. 25, 796–807 (2019). (PMID: 3032730610.1158/1078-0432.CCR-18-0368)
Turke, A. B. et al. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res. 72, 3228–3237 (2012). (PMID: 22552284351507910.1158/0008-5472.CAN-11-3747)
Wee, S. et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 69, 4286–4293 (2009). (PMID: 1940144910.1158/0008-5472.CAN-08-4765)
Weiss, J. et al. KRYSTAL-1: adagrasib (MRTX849) as monotherapy or in combination with cetuximab in patients with colorectal cancer harboring a KRAS G12C mutation. Ann. Oncol. 32, 44–54 (2021). (PMID: 10.1016/j.annonc.2021.08.2093)
Sartore-Bianchi, A. et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 69, 1851–1857 (2009). (PMID: 1922354410.1158/0008-5472.CAN-08-2466)
Xu, J.-M. et al. PIK3CA mutations contribute to acquired cetuximab resistance in patients with metastatic colorectal cancer. Clin. Cancer Res. 23, 4602–4616 (2017). (PMID: 28424201555932610.1158/1078-0432.CCR-16-2738)
Halilovic, E. et al. PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res. 70, 6804–6814 (2010). (PMID: 20699365317845010.1158/0008-5472.CAN-10-0409)
Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008). (PMID: 18849971288045510.1038/nchembio.117)
Uitdehaag, J. C. M. et al. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS ONE 9, e92146 (2014). (PMID: 24651269396130610.1371/journal.pone.0092146)
Velho, P. H. I., Castro, G.Jr & Chung, C. H. Targeting the PI3K pathway in head and neck squamous cell carcinoma. Am. Soc. Clin. Oncol. Educ. Book https://doi.org/10.14694/EdBook_AM.2015.35.123 (2015). (PMID: 10.14694/EdBook_AM.2015.35.123)
Dougherty, M. I. et al. PRAS40 phosphorylation correlates with insulin-like growth factor-1 receptor-induced resistance to epidermal growth factor receptor inhibition in head and neck cancer cells. Mol. Cancer Res. 18, 1392–1401 (2020). (PMID: 32467173748355810.1158/1541-7786.MCR-19-0592)
Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007). (PMID: 1738626610.1016/j.molcel.2007.03.003)
Wang, Z. et al. 4E-BP1 is a tumor suppressor protein reactivated by mTOR inhibition in head and neck cancer. Cancer Res. 79, 1438–1450 (2019). (PMID: 30894372644570910.1158/0008-5472.CAN-18-1220)
Hallin, J. et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020). (PMID: 3165895510.1158/2159-8290.CD-19-1167)
Brown, W. S. et al. Overcoming adaptive resistance to KRAS and MEK inhibitors by co-targeting mTORC1/2 complexes in pancreatic cancer. Cell Rep. Med. 1, 100131 (2020). (PMID: 33294856769144310.1016/j.xcrm.2020.100131)
Ilagan, E. & Manning, B. D. Emerging role of mTOR in the response to cancer therapeutics. Trends Cancer 2, 241–251 (2016). (PMID: 27668290503324310.1016/j.trecan.2016.03.008)
Mizrachi, A. et al. Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nat. Commun. 8, 14292 (2017). (PMID: 28194032531683010.1038/ncomms14292)
Fritsch, C. et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther. 13, 1117–1129 (2014). (PMID: 2460857410.1158/1535-7163.MCT-13-0865)
Ihle, N. T. et al. Peroxisome proliferator-activated receptor γ agonist pioglitazone prevents the hyperglycemia caused by phosphatidylinositol 3-kinase pathway inhibition by PX-866 without affecting antitumor activity. Mol. Cancer Ther. 8, 94–100 (2009). (PMID: 19139117263394110.1158/1535-7163.MCT-08-0714)
Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS G12D inhibitor. Nat. Med. 28, 2171–2182 (2022). (PMID: 3621693110.1038/s41591-022-02007-7)
Niu, Z., Jin, R., Zhang, Y. & Li, H. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct. Targeted Ther. 7, 353 (2022). (PMID: 10.1038/s41392-022-01200-x)
Tao, J. J. et al. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K–Akt pathway in triple-negative breast cancer. Sci. Signal. 7, ra29 (2014). (PMID: 24667376428321510.1126/scisignal.2005125)
Zhang, X., Gureasko, J., Shen, K., Cole, P. A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006). (PMID: 1677760310.1016/j.cell.2006.05.013)
Walker, E. H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000). (PMID: 1109062810.1016/S1097-2765(05)00089-4)
Puhl, A. C. et al. Mode of peroxisome proliferator-activated receptor γ activation by luteolin. Mol. Pharmacol. 81, 788–799 (2012). (PMID: 2239110310.1124/mol.111.076216)
Sharma, M. et al. Targeting DNA repair and survival signaling in diffuse intrinsic pontine gliomas to prevent tumor recurrence. Mol. Cancer Ther. 23, 24–34 (2024). (PMID: 3772304610.1158/1535-7163.MCT-23-0026)
Zhang, Y. et al. Canonical Wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73, 4909–4922 (2013). (PMID: 23761328376369610.1158/0008-5472.CAN-12-4384)
Ziemke, E. K. et al. Sensitivity of KRAS-mutant colorectal cancers to combination therapy that cotargets MEK and CDK4/6. Clin. Cancer Res. 22, 405–414 (2016). (PMID: 2636963110.1158/1078-0432.CCR-15-0829)
Rubin, C. S., Hirsch, A., Fung, C. & Rosen, O. M. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J. Biol. Chem. 253, 7570–7578 (1978). (PMID: 8120510.1016/S0021-9258(17)34541-6)
Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015). (PMID: 2647992310.1038/nm.3954)
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009). (PMID: 1909777410.1016/j.ejca.2008.10.026)
معلومات مُعتمدة: R41 CA261407 United States CA NCI NIH HHS; R44 CA213715, R41 CA261407 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI); R01 CA220199, R01 CA241764, R21 CA267412, R44 CA213715, R41 CA261407, P30 CA046592 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI); R21 CA267412 United States CA NCI NIH HHS; R44 CA213715 United States CA NCI NIH HHS; R01 CA220199 United States CA NCI NIH HHS; R01 CA241764 United States CA NCI NIH HHS
تواريخ الأحداث: Date Created: 20240711 Latest Revision: 20240814
رمز التحديث: 20240815
DOI: 10.1038/s43018-024-00781-6
PMID: 38992135
قاعدة البيانات: MEDLINE
الوصف
تدمد:2662-1347
DOI:10.1038/s43018-024-00781-6