دورية أكاديمية

Hyperpolarized 13 C and 31 P MRS detects differences in cardiac energetics, metabolism, and function in obesity, and responses following treatment.

التفاصيل البيبلوغرافية
العنوان: Hyperpolarized 13 C and 31 P MRS detects differences in cardiac energetics, metabolism, and function in obesity, and responses following treatment.
المؤلفون: Lewis AJM; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK., Dodd MS; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.; Centre for Health and Life Sciences, Coventry University, Coventry, UK., Sourdon J; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK., Lygate CA; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK., Clarke K; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK., Neubauer S; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK., Tyler DJ; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK., Rider OJ; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
المصدر: NMR in biomedicine [NMR Biomed] 2024 Jul 12, pp. e5206. Date of Electronic Publication: 2024 Jul 12.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8915233 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1492 (Electronic) Linking ISSN: 09523480 NLM ISO Abbreviation: NMR Biomed Subsets: MEDLINE
أسماء مطبوعة: Publication: Chichester : Wiley
Original Publication: London : Heyden & Son, 1988-
مستخلص: Obesity is associated with important changes in cardiac energetics and function, and an increased risk of adverse cardiovascular outcomes. Multi-nuclear MRS and MRI techniques have the potential to provide a comprehensive non-invasive assessment of cardiac metabolic perturbation in obesity. A rat model of obesity was created by high-fat diet feeding. This model was characterized using in vivo hyperpolarized [1- 13 C]pyruvate and [2- 13 C]pyruvate MRS, echocardiography and perfused heart 31 P MRS. Two groups of obese rats were subsequently treated with either caloric restriction or the glucagon-like peptide-1 analogue/agonist liraglutide, prior to reassessment. The model recapitulated cardiovascular consequences of human obesity, including mild left ventricular hypertrophy, and diastolic, but not systolic, dysfunction. Hyperpolarized 13 C and 31 P MRS demonstrated that obesity was associated with reduced myocardial pyruvate dehydrogenase flux, altered cardiac tricarboxylic acid (TCA) cycle metabolism, and impaired myocardial energetic status (lower phosphocreatine to adenosine triphosphate ratio and impaired cardiac ΔG ~ATP ). Both caloric restriction and liraglutide treatment were associated with normalization of metabolic changes, alongside improvement in cardiac diastolic function. In this model of obesity, hyperpolarized 13 C and 31 P MRS demonstrated abnormalities in cardiac metabolism at multiple levels, including myocardial substrate selection, TCA cycle, and high-energy phosphorus metabolism. Metabolic changes were linked with impairment of diastolic function and were reversed in concert following either caloric restriction or liraglutide treatment. With hyperpolarized 13 C and 31 P techniques now available for human use, the findings support a role for multi-nuclear MRS in the development of new therapies for obesity.
(© 2024 The Author(s). NMR in Biomedicine published by John Wiley & Sons Ltd.)
References: Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305‐313. doi:10.1056/NEJMoa020245.
Adams KF, Schatzkin A, Harris TB, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355(8):763‐778. doi:10.1056/NEJMoa055643.
Alpert MA, Lambert CR, Panayiotou H, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol. 1995;76(16):1194‐1197. doi:10.1016/S0002‐9149(99)80338‐5.
Ebong IA, Goff DC Jr, Rodriguez CJ, Chen H, Bertoni AG. Mechanisms of heart failure in obesity. Obes Res Clin Pract. 2014;8(6):e540‐e548. doi:10.1016/j.orcp.2013.12.005.
Rayner JJ, Peterzan MA, Watson WD, et al. Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response. Circulation. 2020;141(14):1152‐1163. doi:10.1161/CIRCULATIONAHA.119.042770.
Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875‐880. doi:10.1038/nature05487.
Alpert M, Terry BE, Mulekar M, et al. Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. Am J Cardiol. 1997;80(5):736‐740. doi:10.1016/S0002‐9149(97)00505‐5.
Rayner J, Banerjee R, Holloway C, et al. The relative contribution of metabolic and structural abnormalities to diastolic dysfunction in obesity. Int J Obes (Lond). 2018;42(3):441‐447. doi:10.1038/ijo.2017.239.
Rider OJ, Francis JM, Ali MK, et al. Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J Am Coll Cardiol. 2009;54(8):718‐726. doi:10.1016/j.jacc.2009.02.086.
Vermeulen I, Isin EM, Barton P, Cillero‐Pastor B, Heeren RM. Multimodal molecular imaging in drug discovery and development. Drug Discov Today. 2022;27(8):2086‐2099. doi:10.1016/j.drudis.2022.04.009.
Karamitsos T, Neubauer S. Cardiovascular magnetic resonance imaging. Medicine. 2022;50(6):372‐378. doi:10.1016/j.mpmed.2022.03.007.
Lewis AJ, Tyler DJ, Rider O. Clinical cardiovascular applications of hyperpolarized magnetic resonance. Cardiovasc Drugs Ther. 2020;34(2):231‐240. doi:10.1007/s10557‐020‐06942‐w.
Schroeder MA, Atherton HJ, Ball DR, et al. Real‐time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J. 2009;23(8):2529‐2538. doi:10.1096/fj.09‐129171.
Chen H‐Y, Gordon JW, Dwork N, et al. Probing human heart TCA cycle metabolism and response to glucose load using hyperpolarized [2‐13C]pyruvate MR spectroscopy. medRxiv. Preprint posted online October 19, 2023. 10.1101/2023.10.16.23297053.
Cunningham CH, Lau JY, Chen AP, et al. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res. 2016;119(11):1177‐1182. doi:10.1161/CIRCRESAHA.116.309769.
Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. 2007;356(11):1140‐1151. doi:10.1056/NEJMra063052.
Atherton HJ, Schroeder MA, Dodd MS, et al. Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS. NMR Biomed. 2011;24(2):201‐208. doi:10.1002/nbm.1573.
Dodd MS, Atherton HJ, Carr CA, et al. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ Cardiovasc Imaging. 2014;7(6):895‐904. doi:10.1161/CIRCIMAGING.114.001857.
Atherton HJ, Dodd MS, Heather LC, et al. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study. Circulation. 2011;123(22):2552‐2561. doi:10.1161/CIRCULATIONAHA.110.011387.
Zierhut ML, Yen Y‐F, Chen AP, et al. Kinetic modeling of hyperpolarized 13C1‐pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson. 2010;202(1):85‐92. doi:10.1016/j.jmr.2009.10.003.
Neubauer S, Horn M, Naumann A, et al. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest. 1995;95(3):1092‐1100. doi:10.1172/JCI117756.
Labs J. 2024. https://janvier-labs.com/en/fiche_produit/long-evans_rat/.
Schroeder MA, Cochlin LE, Heather LC, Clarke K, Radda GK, Tyler DJ. In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon‐13 magnetic resonance. Proc Natl Acad Sci U S A. 2008;105(33):12051‐12056. doi:10.1073/pnas.0805953105.
Rider OJ, Apps A, Miller JJ, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI. Circ Res. 2020;126(6):725‐736. doi:10.1161/CIRCRESAHA.119.316260.
Josan S, Park JM, Hurd R, et al. In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1‐13C] and [2‐13C] pyruvate. NMR Biomed. 2013;26(12):1680‐1687. doi:10.1002/nbm.3003.
Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387(3):205‐216. doi:10.1056/NEJMoa2206038.
Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. 2023;389(12):1069‐1084. doi:10.1056/NEJMoa2306963.
Wilding JP, Batterham RL, Calanna S, et al. Once‐weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989‐1002. doi:10.1056/NEJMoa2032183.
Noyan‐Ashraf MH, Shikatani EA, Schuiki I, et al. A glucagon‐like peptide‐1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation. 2013;127(1):74‐85. doi:10.1161/CIRCULATIONAHA.112.091215.
Rider OJ, Tyler DJ. Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson. 2013;15(1):93. doi:10.1186/1532‐429X‐15‐93.
Valkovič L, Clarke WT, Schmid AI, et al. Measuring inorganic phosphate and intracellular pH in the healthy and hypertrophic cardiomyopathy hearts by in vivo 7T 31P‐cardiovascular magnetic resonance spectroscopy. J Cardiovasc Magn Reson. 2019;21(1):19. doi:10.1186/s12968‐019‐0529‐4.
Rider OJ, Francis JM, Ali MK, et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation. 2012;125(12):1511‐1519. doi:10.1161/CIRCULATIONAHA.111.069518.
AlJaroudi W, Alraies MC, Halley C, et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation. 2012;125(6):782‐788. doi:10.1161/CIRCULATIONAHA.111.066423.
معلومات مُعتمدة: FS/19/18/34252 Academy of Medical Sciences and the British Heart Foundation; FS/14/17/30634 Academy of Medical Sciences and the British Heart Foundation; RG/13/8/30266 Academy of Medical Sciences and the British Heart Foundation; RG/18/12/34040 Academy of Medical Sciences and the British Heart Foundation; RE/18/3/34214 BHF Oxford Centre for Research Excellence
فهرسة مساهمة: Keywords: diastolic function; hyperpolarized MRI; obesity
تواريخ الأحداث: Date Created: 20240712 Latest Revision: 20240712
رمز التحديث: 20240712
DOI: 10.1002/nbm.5206
PMID: 38994722
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1492
DOI:10.1002/nbm.5206