دورية أكاديمية

Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations.

التفاصيل البيبلوغرافية
العنوان: Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations.
المؤلفون: Saadh MJ; Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan., Mustafa MA; Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq., Malathi H; Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India., Ahluwalia G; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India., Kaur S; Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India., Al-Dulaimi MAAH; Department of Pharmacy, Al-Noor University College, Nineveh, Iraq., Alubiady MHS; Department of Medical Engineering, Al-Hadi University College, Baghdad, 10011, Iraq., Zain Al-Abdeen SH; Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq., Shakier HG; College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq., Ali MS; Department of Dentistry, Al-Zahrawi University College, Karbala, Iraq., Ahmad I; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia. irfancsmmu@gmail.com., Abosaoda MK; College of Pharmacy, The Islamic University, Najaf, Iraq.; College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.; College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq.
المصدر: Medical oncology (Northwood, London, England) [Med Oncol] 2024 Jul 13; Vol. 41 (8), pp. 201. Date of Electronic Publication: 2024 Jul 13.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 9435512 Publication Model: Electronic Cited Medium: Internet ISSN: 1559-131X (Electronic) Linking ISSN: 13570560 NLM ISO Abbreviation: Med Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : New York : Springer
Original Publication: Northwood, Middlesex, England : Science and Technology Letters, c1994-
مواضيع طبية MeSH: Pancreatic Neoplasms*/drug therapy , Pancreatic Neoplasms*/pathology , Tumor Microenvironment*/drug effects , Phytochemicals*/pharmacology , Phytochemicals*/therapeutic use, Humans ; Animals ; Antineoplastic Agents, Phytogenic/pharmacology ; Antineoplastic Agents, Phytogenic/therapeutic use ; Nanoparticles
مستخلص: Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Gaianigo N, Melisi D, Carbone C. EMT and treatment resistance in pancreatic cancer. Cancers (Basel). 2017;9(9):122. (PMID: 2889592010.3390/cancers9090122)
Yuan J, Zhu Z, Zhang P, Ashrafizadeh M, Abd El-Aty AM, Hacımüftüoğlu A, et al. SKP2 promotes the metastasis of pancreatic ductal adenocarcinoma by suppressing TRIM21-mediated PSPC1 degradation. Cancer Lett. 2024;587:216733. https://doi.org/10.1016/j.canlet.2024.216733 . (PMID: 10.1016/j.canlet.2024.21673338360141)
Zhang W, Fan Y, Zhang J, Shi D, Yuan J, Ashrafizadeh M, et al. Cell membrane-camouflaged bufalin targets NOD2 and overcomes multidrug resistance in pancreatic cancer. Drug Resist Updat. 2023;71:101005. https://doi.org/10.1016/j.drup.2023.101005 . (PMID: 10.1016/j.drup.2023.10100537647746)
Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10(1):10. (PMID: 30834048639677510.14740/wjon1166)
Kikuyama M, Kamisawa T, Kuruma S, Chiba K, Kawaguchi S, Terada S, Satoh T. Early diagnosis to improve the poor prognosis of pancreatic cancer. Cancers (Basel). 2018;10(2):48. (PMID: 2943946110.3390/cancers10020048)
Barros AG, Pulido CF, Machado M, Brito MJ, Couto N, Sousa O, et al. Treatment optimization of locally advanced and metastatic pancreatic cancer. Int J Oncol. 2021;59(6):1–18. (PMID: 10.3892/ijo.2021.5290)
Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. The Lancet. 2020;395(10242):2008–20. (PMID: 10.1016/S0140-6736(20)30974-0)
Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326(9):851–62. (PMID: 34547082936315210.1001/jama.2021.13027)
Pishvaian MJ, Blais EM, Brody JR, Lyons E, DeArbeloa P, Hendifar A, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol. 2020;21(4):508–18. (PMID: 32135080745374310.1016/S1470-2045(20)30074-7)
Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15(6):333–48. (PMID: 2971723010.1038/s41575-018-0005-x)
Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg. 2019;3(2):130–7. (PMID: 30923782642279810.1002/ags3.12225)
Rana P, Shrama A, Mandal CC. Molecular insights into phytochemicals-driven break function in tumor microenvironment. J Food Biochem. 2021;45(9): e13824. (PMID: 3421924010.1111/jfbc.13824)
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol. 2020;10:497776. (PMID: 10.3389/fphar.2019.01614)
Sonkar A, Sonkar P. Potential role of nanophytochemicals in breast cancer therapy. UK: Phytochemicals as an Epigenetic Modifier in Cancer Prevention. IOP Publishing Bristol; 2023. p. 14–21.
Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, et al. Role of phytochemicals in cancer prevention. Int J Mol Sci. 2019;20(20):4981. (PMID: 31600949683418710.3390/ijms20204981)
NavaneethaKrishnan S, Rosales JL, Lee K-Y. ROS-mediated cancer cell killing through dietary phytochemicals. Oxid Med Cell Longev. 2019;2019:9051542. (PMID: 31217841653698810.1155/2019/9051542)
Rudzińska A, Juchaniuk P, Oberda J, Wiśniewska J, Wojdan W, Szklener K, Mańdziuk S. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials. Nutrients. 2023;15(8):1896. (PMID: 371111151014442910.3390/nu15081896)
Koche D, Shirsat R, Kawale M. An overerview of major classes of phytochemicals: their types and role in disease prevention. Hislopia J. 2016;9(1/2):1–11.
Yu C, Yang B, Najafi M. Targeting of cancer cell death mechanisms by curcumin: implications to cancer therapy. Basic Clin Pharmacol Toxicol. 2021;129(6):397–415. https://doi.org/10.1111/bcpt.13648 . (PMID: 10.1111/bcpt.1364834473898)
Fu X, Li M, Tang C, Huang Z, Najafi M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis. 2021;26(11–12):561–73. (PMID: 3456176310.1007/s10495-021-01689-7)
Amini P, Moazamiyanfar R, Dakkali MS, Khani A, Jafarzadeh E, Mouludi K, et al. Resveratrol in cancer therapy: from stimulation of genomic stability to adjuvant cancer therapy: a comprehensive review. Curr Top Med Chem. 2023;23(8):629–48. (PMID: 3623973010.2174/1568026623666221014152759)
More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, et al. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Medicine in Drug Discovery. 2021;10:100082. (PMID: 10.1016/j.medidd.2021.100082)
Negri A, Naponelli V, Rizzi F, Bettuzzi S. Molecular targets of epigallocatechin—Gallate (EGCG): a special focus on signal transduction and cancer. Nutrients. 2018;10(12):1936. (PMID: 30563268631558110.3390/nu10121936)
Moslehi M, Rezaei S, Talebzadeh P, Ansari MJ, Jawad MA, Jalil AT, et al. Apigenin in cancer therapy: prevention of genomic instability and anticancer mechanisms. Clin Exp Pharmacol Physiol. 2023;50(1):3–18. (PMID: 3611195110.1111/1440-1681.13725)
Ezzati M, Yousefi B, Velaei K, Safa A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 2020;248:117463. (PMID: 3209766310.1016/j.lfs.2020.117463)
Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177. (PMID: 31261749665141810.3390/ijms20133177)
Yang Y, Trevethan M, Wang S, Zhao L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: an update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem. 2022;104:108967. (PMID: 35189328905820210.1016/j.jnutbio.2022.108967)
Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and naringenin: their mechanisms of action and the potential anticancer activities. Biomedicines. 2022;10(7):1686. (PMID: 35884991931344010.3390/biomedicines10071686)
Pyrzynska K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients. 2022;14(12):2387. (PMID: 35745117922768510.3390/nu14122387)
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, et al. Molecular mechanisms of action of hesperidin in cancer: recent trends and advancements. Exp Biol Med. 2020;245(5):486–97. (PMID: 10.1177/1535370220903671)
Chandrashekar N, Pandi A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. J Food Biochem. 2022;46(9): e14230. (PMID: 3554319210.1111/jfbc.14230)
Lohse I, Wildermuth E, Brothers SP. Naturally occurring compounds as pancreatic cancer therapeutics. Oncotarget. 2018;9(83):35448. (PMID: 30459936622604210.18632/oncotarget.26234)
Yan-Hua Y, Jia-Wang M, Xiao-Li T. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med. 2020;18(12):890–7.
Kanda Y, Ishihara Y, Wilde NC, Baran PS. Two-phase total synthesis of taxanes: tactics and strategies. J Org Chem. 2020;85(16):10293–320. (PMID: 3266300210.1021/acs.joc.0c01287)
Schneider F, Pan L, Ottenbruch M, List T, Gaich T. The chemistry of nonclassical taxane diterpene. Acc Chem Res. 2021;54(10):2347–60. (PMID: 3394261210.1021/acs.accounts.0c00873)
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updates. 2021;54:100742. (PMID: 10.1016/j.drup.2020.100742)
Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis. 2022;27(9–10):647–67. https://doi.org/10.1007/s10495-022-01750-z . (PMID: 10.1007/s10495-022-01750-z35849264)
Ojima I, Lichtenthal B, Lee S, Wang C, Wang X. Taxane anticancer agents: a patent perspective. Expert Opin Ther Pat. 2016;26(1):1–20. (PMID: 2665117810.1517/13543776.2016.1111872)
da Costa R, Passos GF, Quintão NL, Fernandes ES, Maia JRL, Campos MM, Calixto JB. Taxane-induced neurotoxicity: pathophysiology and therapeutic perspectives. Br J Pharmacol. 2020;177(14):3127–46. (PMID: 32352155731226710.1111/bph.15086)
Sousa-Pimenta M, Estevinho LM, Szopa A, Basit M, Khan K, Armaghan M, et al. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Front Pharmacol. 2023;14:1157306. (PMID: 372292701020319710.3389/fphar.2023.1157306)
Moazamiyanfar R, Rezaei S, AliAshrafzadeh H, Rastegar-Pouyani N, Jafarzadeh E, Mouludi K, et al. Nobiletin in cancer therapy; mechanisms and therapy perspectives. Curr Pharm Des. 2023;29(22):1713–28. (PMID: 3718532510.2174/1381612829666230426115424)
Wang H, Dong Z, Liu J, Zhu Z, Najafi M. Mechanisms of cancer-killing by quercetin; a review on cell death mechanisms. Anti-Cancer Agent Med Chem. 2023;23(9):999–1012. (PMID: 10.2174/1871520623666230120094158)
Amini P, Moazamiyanfar R, Dakkali MS, Jafarzadeh E, Ganjizadeh M, Rastegar-Pouyani N, et al. Induction of cancer cell death by apigenin: a review on different cell death pathways. Mini Rev Med Chem. 2023;23(14):1461–78. (PMID: 3665871010.2174/1389557523666230119110744)
Lafta HA, AbdulHussein AH, Al-Shalah SA, Alnassar YS, Mohammed NM, Akram SM, et al. Tumor-associated macrophages (TAMs) in cancer resistance; modulation by natural products. Curr Top Med Chem. 2023;23(12):1104–22. (PMID: 3672248610.2174/1568026623666230201145909)
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. Environ Res. 2023;233:116432. (PMID: 3733155710.1016/j.envres.2023.116432)
Wei Q, Zhang Y-H. Flavonoids with anti-angiogenesis function in cancer. Mol. 2024;29(7):1570. (PMID: 10.3390/molecules29071570)
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: a review. Crit Rev Food Sci Nutr. 2022;62(23):6421–45. (PMID: 3378742210.1080/10408398.2021.1901650)
Rathaur P, SR KJ. Metabolism and pharmacokinetics of phytochemicals in the human body. Curr Drug Metab. 2019;20(14):1085–102. (PMID: 3190234910.2174/1389200221666200103090757)
Shayesteh MR, Haghi-Aminjan H, Mousavi MJ, Momtaz S, Abdollahi M. The protective mechanism of cannabidiol in cardiac injury: a systematic review of non-clinical studies. Curr Pharm Des. 2019;25(22):2499–507. (PMID: 3129187310.2174/2210327909666190710103103)
Askari H, Zeinali F, Haghi-Aminjan H, Hafizi SM, Alirezaei A. The protective effects of Ocimum basilicum extract against gentamicin-induced nephrotoxicity in male rats; an anti-inflammatory, anti-oxidative and antiapoptotic action. Immunopathologia Persa. 2019;5(2):e21–e21. (PMID: 10.15171/ipp.2019.21)
Payab M, Hasani-Ranjbar S, Shahbal N, Qorbani M, Aletaha A, Haghi-Aminjan H, et al. Effect of the herbal medicines in obesity and metabolic syndrome: a systematic review and meta-analysis of clinical trials. Phytother Res. 2020;34(3):526–45. (PMID: 3179308710.1002/ptr.6547)
Rizeq B, Gupta I, Ilesanmi J, AlSafran M, Rahman MM, Ouhtit A. The power of phytochemicals combination in cancer chemoprevention. J Cancer. 2020;11(15):4521. (PMID: 32489469725536110.7150/jca.34374)
George BP, Chandran R, Abrahamse H. Role of phytochemicals in cancer chemoprevention: insights. Antioxidants. 2021;10(9):1455. (PMID: 34573087846698410.3390/antiox10091455)
Singh K, A Alameri A, Ali Hamza A, E Al-Gazally M, TemurovichIslomov S, Fadhel Obaid R, et al. Cardiac injury following chemo/radiation therapy: an updated review on mechanisms and therapeutic approaches. Curr Radiopharmac. 2023;16(3):185–203. (PMID: 10.2174/1874471016666230214101830)
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. Environ Res. 2023;244:117264. (PMID: 3777694110.1016/j.envres.2023.117264)
Moloudi K, Khani A, Najafi M, Azmoonfar R, Azizi M, Nekounam H, et al. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdisciplin Rev Nanomed Nanobiotechnol. 2023;15(6): e1886. (PMID: 10.1002/wnan.1886)
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12:601626. (PMID: 33613290788738710.3389/fphar.2021.601626)
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, et al. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol. 2024;273(Pt 1):132579. https://doi.org/10.1016/j.ijbiomac.2024.132579 . (PMID: 10.1016/j.ijbiomac.2024.13257938795895)
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv. 2017;14(2):201–14. (PMID: 2742663810.1080/17425247.2016.1213238)
Choi J-S, Cho NH, Kim D-H, Park J-S. Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in vitro anti-cancer effects. Mater Sci Eng, C. 2019;100:247–59. (PMID: 10.1016/j.msec.2019.03.002)
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao C-X. Lipid nanoparticles for drug delivery. Adv NanoBiomed Res. 2022;2(2):2100109. (PMID: 10.1002/anbr.202100109)
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems–The current state. Adv Coll Interface Sci. 2022;309: 102757. (PMID: 10.1016/j.cis.2022.102757)
Paul W, Sharma CP. Inorganic nanoparticles for targeted drug delivery. Bioint Med Impl Mat. 2020;20:333–73.
Siddique S, Chow JC. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020;10(11):3824. (PMID: 10.3390/app10113824)
Gu Y, Fei Z. Mesoporous silica nanoparticles loaded with resveratrol are used for targeted breast cancer therapy. J Oncol. 2022;2022:8471331. (PMID: 36245986955352910.1155/2022/8471331)
Dong J-H, Ma Y, Li R, Zhang W-T, Zhang M-Q, Meng F-N, et al. Smart MSN-drug-delivery system for tumor cell targeting and tumor microenvironment release. ACS Appl Mater Interfaces. 2021;13(36):42522–32. (PMID: 3446348810.1021/acsami.1c14189)
Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials. 2017;7(7):189. (PMID: 28737672553525510.3390/nano7070189)
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol. 2024;260(Pt 2):129391. https://doi.org/10.1016/j.ijbiomac.2024.129391 . (PMID: 10.1016/j.ijbiomac.2024.12939138242413)
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today. 2024;29:103981. https://doi.org/10.1016/j.drudis.2024.103981 . (PMID: 10.1016/j.drudis.2024.10398138614161)
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol. 2024;17(1):16. https://doi.org/10.1186/s13045-024-01535-8 . (PMID: 10.1186/s13045-024-01535-83856619910986145)
Viegas C, Patrício AB, Prata J, Fonseca L, Macedo AS, Duarte SOD, Fonte P. Advances in pancreatic cancer treatment by nano-based drug delivery systems. Pharmaceutics. 2023;15(9):2363. (PMID: 377653311053630310.3390/pharmaceutics15092363)
E Karamitopoulou. The tumor microenvironment of pancreatic cancer. MDPI; 2020. p. 3076.
Kpeglo D, Hughes MD, Dougan L, Haddrick M, Knowles MA, Evans SD, Peyman SA. Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biology Plus. 2022;14:100109. (PMID: 35399702899017310.1016/j.mbplus.2022.100109)
Truong L-H, Pauklin S. Pancreatic cancer microenvironment and cellular composition: current understandings and therapeutic approaches. Cancers. 2021;13(19):5028. (PMID: 34638513850772210.3390/cancers13195028)
Norton J, Foster D, Chinta M, Titan A, Longaker M. Pancreatic cancer associated fibroblasts (CAF): under-explored target for pancreatic cancer treatment. Cancers (Basel). 2020;12(5):1347. (PMID: 3246626610.3390/cancers12051347)
Tang D, Wu Q, Zhang J, Zhang H, Yuan Z, Xu J, et al. Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncol Rep. 2018;39(3):1347–55. (PMID: 29328490)
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental determinants of pancreatic cancer. Physiol Rev. 2020;100(4):1707–51. (PMID: 3229783510.1152/physrev.00042.2019)
Takahashi K, Ehata S, Koinuma D, Morishita Y, Soda M, Mano H, Miyazono K. Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene. 2018;37(21):2757–72. (PMID: 29511349596636410.1038/s41388-018-0144-0)
Thyagarajan A, Alshehri MSA, Miller KL, Sherwin CM, Travers JB, Sahu RP. Myeloid-derived suppressor cells and pancreatic cancer: Implications in novel therapeutic approaches. Cancers. 2019;11(11):1627. (PMID: 31652904689381410.3390/cancers11111627)
Shah VM, Sheppard BC, Sears RC, Alani AW. Hypoxia: friend or foe for drug delivery in pancreatic cancer. Cancer Lett. 2020;492:63–70. https://doi.org/10.1016/j.canlet.2020.07.041 . (PMID: 10.1016/j.canlet.2020.07.041328228157879337)
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol. 2021;14(1):14. https://doi.org/10.1186/s13045-020-01030-w . (PMID: 10.1186/s13045-020-01030-w334360447805044)
Hwang HJ, Oh M-S, Lee DW, Kuh H-J. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res. 2019;38:1–14. (PMID: 10.1186/s13046-019-1225-9)
Perez VM, Kearney JF, Yeh JJ. The PDAC extracellular matrix: a review of the ECM protein composition, tumor cell interaction, and therapeutic strategies. Front Oncol. 2021;11:751311. (PMID: 34692532852685810.3389/fonc.2021.751311)
Tian C, Clauser KR, Öhlund D, Rickelt S, Huang Y, Gupta M, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc Natl Acad Sci. 2019;116(39):19609–18. (PMID: 31484774676524310.1073/pnas.1908626116)
Slapak EJ, Duitman J, Tekin C, Bijlsma MF, Spek CA. Matrix metalloproteases in pancreatic ductal adenocarcinoma: key drivers of disease progression? Biology. 2020;9(4):80. (PMID: 32325664723598610.3390/biology9040080)
Gregori A, Bergonzini C, Capula M, Mantini G, Khojasteh-Leylakoohi F, Comandatore A, et al. Prognostic significance of integrin subunit alpha 2 (ITGA2) and role of mechanical cues in resistance to gemcitabine in pancreatic ductal adenocarcinoma (PDAC). Cancers (Basel). 2023;15(3):628. (PMID: 3676558610.3390/cancers15030628)
Kast V, Nadernezhad A, Pette D, Gabrielyan A, Fusenig M, Honselmann KC, et al. A tumor microenvironment model of pancreatic cancer to elucidate responses toward immunotherapy. Adv Healthcare Mater. 2023;12(14):2201907. (PMID: 10.1002/adhm.202201907)
Mueller AC, Piper M, Goodspeed A, Bhuvane S, Williams JS, Bhatia S, et al. Induction of ADAM10 by radiation therapy drives fibrosis, resistance, and epithelial-to-mesenchyal transition in pancreatic cancer. Cancer Res. 2021;81(12):3255–69. (PMID: 33526513826046910.1158/0008-5472.CAN-20-3892)
Liu H-Y, Korc M, Lin C-C. Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials. 2018;160:24–36. (PMID: 29353105581538310.1016/j.biomaterials.2018.01.012)
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17(8):487–505. (PMID: 32393771828485010.1038/s41575-020-0300-1)
Ullman NA, Burchard PR, Dunne RF, Linehan DC. Immunologic strategies in pancreatic cancer: making cold tumors hot. J Clin Oncol. 2022;40(24):2789. (PMID: 35839445939082010.1200/JCO.21.02616)
Valilou SF, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev. 2018;39:46–61. (PMID: 10.1016/j.cytogfr.2018.01.007)
Jewett A, Kos J, Fong Y, Ko MW, Safaei T, Nanut MP, Kaur K, editors. NK cells shape pancreatic and oral tumor microenvironments role in inhibition of tumor growth and metastasis. Semin Cancer Biol. Amsterdam: Elsevier; 2018.
Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci. 2019;20(3):676. (PMID: 30764482638744010.3390/ijms20030676)
Zhou Q, Tao X, Xia S, Guo F, Pan C, Xiang H, Shang D. T lymphocytes: a promising immunotherapeutic target for pancreatitis and pancreatic cancer? Front Oncol. 2020;10:382. (PMID: 32266154710573610.3389/fonc.2020.00382)
Looi CK, Chung FFL, Leong CO, Wong SF, Rosli R, Mai CW. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res. 2019;38:1–23. (PMID: 10.1186/s13046-019-1153-8)
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Discov. 2023;13(2):278–97. (PMID: 36622087990032510.1158/2159-8290.CD-22-0876)
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: current research and future perspective. Front Oncol. 2023;13:1166860. (PMID: 370641131009051910.3389/fonc.2023.1166860)
Yao J, Huang M, Shen Q, Ding M, Yu S, Guo Y, et al. c-Myc-PD-L1 Axis Sustained Gemcitabine-Resistance in Pancreatic Cancer. Front Pharmacol. 2022;13:851512. https://doi.org/10.3389/fphar.2022.851512 . (PMID: 10.3389/fphar.2022.851512355860619108354)
Ahmad G, Mackenzie GG, Egan J, Amiji MM. DHA-SBT-1214 taxoid nanoemulsion and anti-PD-L1 antibody combination therapy enhances antitumor efficacy in a syngeneic pancreatic adenocarcinoma model. Mol Cancer Ther. 2019;18(11):1961–72. https://doi.org/10.1158/1535-7163.Mct-18-1046 . (PMID: 10.1158/1535-7163.Mct-18-1046314397146825580)
Shetty A, Nagesh PK, Setua S, Hafeez BB, Jaggi M, Yallapu MM, Chauhan SC. Novel paclitaxel nanoformulation impairs de novo lipid synthesis in pancreatic cancer cells and enhances gemcitabine efficacy. ACS Omega. 2020;5(15):8982–91. (PMID: 32337462717880010.1021/acsomega.0c00793)
D’Amico S, Kirillov V, Petrenko O, Reich NC. STAT3 is a genetic modifier of TGF-beta induced EMT in KRAS mutant pancreatic cancer. Elife. 2024;13:RP92559. (PMID: 385738191099466110.7554/eLife.92559.2)
Hu Y, Li R, Jin J, Wang Y, Ma R. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem. 2022;46(12): e14453. (PMID: 3618139510.1111/jfbc.14453)
Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol. 2021;98:107895. https://doi.org/10.1016/j.intimp.2021.107895 . (PMID: 10.1016/j.intimp.2021.10789534171623)
Fu X, He Y, Li M, Huang Z, Najafi M. Targeting of the tumor microenvironment by curcumin. BioFactors. 2021;47(6):914–32. https://doi.org/10.1002/biof.1776 . (PMID: 10.1002/biof.177634375483)
Yu D-L, Lou Z-P, Ma F-Y, Najafi M. The interactions of paclitaxel with tumour microenvironment. Int Immunopharmacol. 2022;105:108555. (PMID: 3512122310.1016/j.intimp.2022.108555)
Fiala M, Halder R, Almasi A, Sagong B, Leung J, Jewett A. Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production. Front Physiol. 2015;6:129. https://doi.org/10.3389/fphys.2015.00129 . (PMID: 10.3389/fphys.2015.00129260522864440907)
Hayakawa T, Yaguchi T, Kawakami Y. Enhanced anti-tumor effects of the PD-1 blockade combined with a highly absorptive form of curcumin targeting STAT3. Cancer Sci. 2020;111(12):4326–35. (PMID: 33006786773401210.1111/cas.14675)
Min SY, Byeon HJ, Lee C, Seo J, Lee ES, Shin BS, et al. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer. Int J Pharm. 2015;494(1):506–15. https://doi.org/10.1016/j.ijpharm.2015.08.055 . (PMID: 10.1016/j.ijpharm.2015.08.05526315118)
Lankadasari MB, Mukhopadhyay P, Mohammed S, Harikumar KB. TAMing pancreatic cancer: combat with a double edged sword. Mol Cancer. 2019;18:1–13. (PMID: 10.1186/s12943-019-0966-6)
Yang S, Liu Q, Liao Q. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: origin, polarization, function, and reprogramming. Front Cell Dev Biol. 2021;8:607209. (PMID: 33505964782954410.3389/fcell.2020.607209)
Nadella V, Garg M, Kapoor S, Barwal TS, Jain A, Prakash H. Emerging neo adjuvants for harnessing therapeutic potential of M1 tumor associated macrophages (TAM) against solid tumors: Enusage of plasticity. Ann Transl Med. 2020;8(16):1029. (PMID: 32953829747546710.21037/atm-20-695)
Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology. 2016;5(8): e1191731. (PMID: 27622062500796110.1080/2162402X.2016.1191731)
Yang J, Li Y, Sun Z, Zhan H. Macrophages in pancreatic cancer: an immunometabolic perspective. Cancer Lett. 2021;498:188–200. (PMID: 3312209710.1016/j.canlet.2020.10.029)
Villalobos-Ayala K, Ortiz Rivera I, Alvarez C, Husain K, DeLoach D, Krystal G, et al. Apigenin increases SHIP-1 expression, promotes tumoricidal macrophages and anti-tumor immune responses in murine pancreatic cancer. Cancers (Basel). 2020;12(12):3631. (PMID: 33291556776185210.3390/cancers12123631)
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, et al. Apigenin targets MicroRNA-155, enhances SHIP-1 expression, and augments anti-tumor responses in pancreatic cancer. Cancers (Basel). 2022;14:3613. https://doi.org/10.3390/cancers14153613 . (PMID: 10.3390/cancers14153613358928729331563)
Madamsetty VS, Pal K, Keshavan S, Caulfield TR, Dutta SK, Wang E, et al. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale. 2019;11(45):22006–18. https://doi.org/10.1039/C9NR05478B . (PMID: 10.1039/C9NR05478B31710073)
Bulle A, Dekervel J, Deschuttere L, Nittner D, Libbrecht L, Plaisance S, et al. Gemcitabine recruits M2-type tumor-associated macrophages into the stroma of pancreatic cancer. Transl Oncol. 2020;13(3):100743. (PMID: 32145636705840710.1016/j.tranon.2020.01.004)
Cullis J, Siolas D, Avanzi A, Barui S, Maitra A, Bar-Sagi D. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol Res. 2017;5(3):182–90. https://doi.org/10.1158/2326-6066.Cir-16-0125 . (PMID: 10.1158/2326-6066.Cir-16-0125281086305570452)
Zhang Y, Lazarus J, Steele NG, Yan W, Lee H-J, Nwosu ZC, et al. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 2020;10(3):422–39. (PMID: 31911451722433810.1158/2159-8290.CD-19-0958)
Cinier J, Hubert M, Besson L, Di Roio A, Rodriguez C, Lombardi V, et al. Recruitment and expansion of tregs cells in the tumor environment—how to target them? Cancers. 2021;13(8):1850. (PMID: 33924428806961510.3390/cancers13081850)
Saleh R, Elkord E. FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett. 2020;490:174–85. https://doi.org/10.1016/j.canlet.2020.07.022 . (PMID: 10.1016/j.canlet.2020.07.02232721551)
Mota Reyes C, Demir E, Çifcibaşı K, Istvanffy R, Friess H, Demir IE. Regulatory T cells in pancreatic cancer: of mice and men. Cancers. 2022;14(19):4582. (PMID: 36230505955935910.3390/cancers14194582)
Piper M, Van Court B, Mueller A, Watanabe S, Bickett T, Bhatia S, et al. Targeting Treg-expressed STAT3 enhances NK-mediated surveillance of metastasis and improves therapeutic response in pancreatic adenocarcinoma. Clin Cancer Res. 2022;28(5):1013–26. (PMID: 34862244889829610.1158/1078-0432.CCR-21-2767)
Mundry CS, Eberle KC, Singh PK, Hollingsworth MA, Mehla K. Local and systemic immunosuppression in pancreatic cancer: targeting the stalwarts in tumor’s arsenal. Biochimica et Biophysica Acta (BBA) Reviews on Cancer. 2020;1874(1):188387. (PMID: 3257988910.1016/j.bbcan.2020.188387)
Sams L, Kruger S, Heinemann V, Bararia D, Haebe S, Alig S, et al. Alterations in regulatory T cells and immune checkpoint molecules in pancreatic cancer patients receiving FOLFIRINOX or gemcitabine plus nab-paclitaxel. Clin Transl Oncol. 2021;23(11):2394–401. https://doi.org/10.1007/s12094-021-02620-x . (PMID: 10.1007/s12094-021-02620-x338764178455387)
Xin L, Gao J, Zheng Z, Chen Y, Lv S, Zhao Z, et al. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front Oncol. 2021;11:648187. https://doi.org/10.3389/fonc.2021.648187 . (PMID: 10.3389/fonc.2021.648187344900788416977)
Glabman RA, Choyke PL, Sato N. Cancer-associated fibroblasts: tumorigenicity and targeting for cancer therapy. Cancers (Basel). 2022;14(16):3906. https://doi.org/10.3390/cancers14163906 . (PMID: 10.3390/cancers1416390636010899)
Wang Q, Qu C, Xie F, Chen L, Liu L, Liang X, et al. Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts. Am J Cancer Res. 2017;7(1):125–33. (PMID: 28123853525068610.1158/1538-7445.AM2017-LB-125)
Zhou X, Zhang P, Liu N, Zhang X, Lv H, Xu W, Huo M. Enhancing chemotherapy for pancreatic cancer through efficient and sustained tumor microenvironment remodeling with a fibroblast-targeted nanosystem. J Control Release. 2023;361:161–77. https://doi.org/10.1016/j.jconrel.2023.07.061 . (PMID: 10.1016/j.jconrel.2023.07.06137536546)
Zeng Y, Du Q, Zhang Z, Ma J, Han L, Wang Y, et al. Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Arch Biochem Biophys. 2020;694:108613. https://doi.org/10.1016/j.abb.2020.108613 . (PMID: 10.1016/j.abb.2020.10861333010228)
Ernsting MJ, Hoang B, Lohse I, Undzys E, Cao P, Do T, et al. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J Control Release. 2015;206:122–30. https://doi.org/10.1016/j.jconrel.2015.03.023 . (PMID: 10.1016/j.jconrel.2015.03.023258048724409566)
Feng J, Xu M, Wang J, Zhou S, Liu Y, Liu S, et al. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials. 2020;241:119907. https://doi.org/10.1016/j.biomaterials.2020.119907 . (PMID: 10.1016/j.biomaterials.2020.11990732120315)
Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano. 2015;9(4):3540–57. (PMID: 25776964441545210.1021/acsnano.5b00510)
Wei D, Cheng X, Du C, Wang Y, Sun J, Li C, et al. Stroma-targeted nanoparticles that remodel stromal alignment to enhance drug delivery and improve the antitumor efficacy of Nab-paclitaxel in pancreatic ductal adenocarcinoma models. Nano Today. 2022;45:101533. https://doi.org/10.1016/j.nantod.2022.101533 . (PMID: 10.1016/j.nantod.2022.101533)
Kim SS, Kim HK, Kim H, Lee WT, Lee ES, Oh KT, et al. Hyperthermal paclitaxel-bound albumin nanoparticles co-loaded with indocyanine green and hyaluronidase for treating pancreatic cancers. Arch Pharm Res. 2021;44(2):182–93. https://doi.org/10.1007/s12272-020-01264-9 . (PMID: 10.1007/s12272-020-01264-932803685)
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol. 2021;14:1–25. (PMID: 10.1186/s13045-020-01030-w)
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K, Adam V. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol. 2022;15(1):77. (PMID: 35659268916652610.1186/s13045-022-01292-6)
He Z, Zhang S. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front Immunol. 2021;12:741305. (PMID: 34603327848168010.3389/fimmu.2021.741305)
Hompland T, Fjeldbo CS, Lyng H. Tumor hypoxia as a barrier in cancer therapy: why levels matter. Cancers. 2021;13(3):499. (PMID: 33525508786609610.3390/cancers13030499)
Yamasaki A, Yanai K, Onishi H. Hypoxia and pancreatic ductal adenocarcinoma. Cancer Lett. 2020;484:9–15. (PMID: 3238012910.1016/j.canlet.2020.04.018)
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett. 2023;571:216345. (PMID: 3755808410.1016/j.canlet.2023.216345)
Chen K, Wang Q, Liu X, Wang F, Yang Y, Tian X. Hypoxic pancreatic cancer derived exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expression. Int J Biol Sci. 2022;18(3):1220. (PMID: 35173549877185310.7150/ijbs.67675)
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:1–19. (PMID: 10.1186/s13046-020-01709-5)
Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 2022;221:1428–38. (PMID: 3612278110.1016/j.ijbiomac.2022.09.129)
Li W, Cao L, Chen X, Lei J, Ma Q. Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the Hedgehog signaling pathway. Oncol Rep. 2016;35(3):1718–26. https://doi.org/10.3892/or.2015.4504 . (PMID: 10.3892/or.2015.450426707376)
Cao L, Xiao X, Lei J, Duan W, Ma Q, Li W. Curcumin inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol Rep. 2016;35(6):3728–34. (PMID: 2703586510.3892/or.2016.4709)
Li W, Sun L, Lei J, Wu Z, Ma Q, Wang Z. Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis. Oncol Rep. 2020;44(1):382–92. (PMID: 3237775210.3892/or.2020.7600)
Büchler P, Reber HA, Büchler MW, Friess H, Lavey RS, Hines OJ. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia inducible factor 1 and the down regulation of VEGF gene expression. Cancer. 2004;100(1):201–10. (PMID: 1469204110.1002/cncr.11873)
Melstrom LG, Salabat MR, Ding X-Z, Strouch MJ, Grippo PJ, Mirzoeva S, et al. Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res. 2011;167(2):173–81. https://doi.org/10.1016/j.jss.2010.10.041 . (PMID: 10.1016/j.jss.2010.10.04121227456)
Ramakrishnan P, Loh WM, Gopinath SCB, Bonam SR, Fareez IM, Mac Guad R, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharmaceutica Sinica B. 2020;10(3):399–413. https://doi.org/10.1016/j.apsb.2019.11.008 . (PMID: 10.1016/j.apsb.2019.11.00832140388)
Guo Y, Tong Y, Zhu H, Xiao Y, Guo H, Shang L, et al. Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-β/Smad signaling pathways. Cell Biol Toxicol. 2021;37(3):479–96. https://doi.org/10.1007/s10565-020-09562-0 . (PMID: 10.1007/s10565-020-09562-033070227)
Sun X-D, Liu X-E, Huang D-S. Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncol Rep. 2013;29(6):2401–7. https://doi.org/10.3892/or.2013.2385 . (PMID: 10.3892/or.2013.238523563640)
Lian GY, Wang QM, Mak TSK, Huang XR, Yu XQ, Lan HY. Inhibition of tumor invasion and metastasis by targeting TGF-β-Smad-MMP2 pathway with Asiatic acid and Naringenin. Mol Ther Oncolytics. 2021;20:277–89. (PMID: 33614911787358010.1016/j.omto.2021.01.006)
Li W, Ma J, Ma Q, Li B, Han L, Liu J, et al. Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr Med Chem. 2013;20(33):4185–94. https://doi.org/10.2174/09298673113209990251 . (PMID: 10.2174/09298673113209990251239923064085327)
Li W, Sun L, Lei J, Wu Z, Ma Q, Wang Z. Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis. Oncol Rep. 2020;44(1):382–92. https://doi.org/10.3892/or.2020.7600 . (PMID: 10.3892/or.2020.760032377752)
Zhai L-L, Li W-B, Chen L-J, Wang W, Ju T-F, Yin D-L. Curcumin inhibits the invasion and migration of pancreatic cancer cells by upregulating TFPI-2 to regulate ERK- and JNK-mediated epithelial–mesenchymal transition. Eur J Nutr. 2024;63(2):639–51. https://doi.org/10.1007/s00394-023-03296-5 . (PMID: 10.1007/s00394-023-03296-538129361)
Arya G, Das M, Sahoo SK. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed Pharmacother. 2018;102:555–66. https://doi.org/10.1016/j.biopha.2018.03.101 . (PMID: 10.1016/j.biopha.2018.03.10129597089)
Bisht S, Mizuma M, Feldmann G, Ottenhof NA, Hong SM, Pramanik D, et al. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther. 2010;9(8):2255–64. https://doi.org/10.1158/1535-7163.Mct-10-0172 . (PMID: 10.1158/1535-7163.Mct-10-0172206473392942082)
RS P, Mal A, Valvi SK, Srivastava R, De A, Bandyopadhyaya R. Noninvasive preclinical evaluation of targeted nanoparticles for the delivery of curcumin in treating pancreatic cancer. ACS Appl Bio Mater. 2020;3(7):4643–54. (PMID: 10.1021/acsabm.0c00515)
معلومات مُعتمدة: R.G.P.2/42/45 Deanship of Scientific Research, King Khalid University
فهرسة مساهمة: Keywords: Cancer-Associated Fibroblasts; Nanoparticles; Pancreatic Tumor; Phytochemicals; Tumor stroma
المشرفين على المادة: 0 (Phytochemicals)
0 (Antineoplastic Agents, Phytogenic)
تواريخ الأحداث: Date Created: 20240713 Date Completed: 20240713 Latest Revision: 20240713
رمز التحديث: 20240714
DOI: 10.1007/s12032-024-02443-0
PMID: 39001987
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-131X
DOI:10.1007/s12032-024-02443-0