دورية أكاديمية

Basic Fibroblast Growth Factor Accumulation in Culture Medium Masks the Direct Antitumor Effect of Anti-VEGF Agent Bevacizumab.

التفاصيل البيبلوغرافية
العنوان: Basic Fibroblast Growth Factor Accumulation in Culture Medium Masks the Direct Antitumor Effect of Anti-VEGF Agent Bevacizumab.
المؤلفون: Wang Z; Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China., Wang Z; Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China., Deng L; Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China., Wu X; Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China., Liang Y; Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan, China., Wei P; Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China. weipei@zmu.edu.cn.
المصدر: Doklady. Biochemistry and biophysics [Dokl Biochem Biophys] 2024 Aug; Vol. 517 (1), pp. 285-290. Date of Electronic Publication: 2024 Jul 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Pleiades Publishing Country of Publication: United States NLM ID: 101126895 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1608-3091 (Electronic) Linking ISSN: 16076729 NLM ISO Abbreviation: Dokl Biochem Biophys Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Pleiades Publishing
Original Publication: Moscow, Russia : [Dordrecht] : International Academic Pub. Co. "Nauka/Interperiodica" ; Distributed worldwide by Kluwer Academic/Plenum Publishers, c2001-
مواضيع طبية MeSH: Fibroblast Growth Factor 2*/pharmacology , Fibroblast Growth Factor 2*/metabolism , Bevacizumab*/pharmacology , Cell Proliferation*/drug effects, Humans ; Cell Line, Tumor ; Culture Media/chemistry ; Culture Media/pharmacology ; Vascular Endothelial Growth Factor A/metabolism ; Angiogenesis Inhibitors/pharmacology ; A549 Cells ; Antineoplastic Agents, Immunological/pharmacology
مستخلص: The direct antitumor effect of bevacizumab (BEV) has long been debated. Evidence of the direct antitumor activities of drugs are mainly obtained from in vitro experiments, which are greatly affected by experimental conditions. In this study, we evaluated the effect of BEV-containing medium renewal on the results of in vitro cytotoxicity experiments in A549 and U251 cancer cells. We observed starkly different results between the experiments with and without BEV-containing medium renewal. Specifically, BEV inhibited the tumor cell growth in the timely replacement with a BEV-containing medium but promoted tumor cell growth without medium renewal. Meanwhile, compared with the control, a significant basic fibroblast growth factor (bFGF) accumulation in the supernatant was observed in the group without medium renewal but none in that with replaced medium. Furthermore, bFGF neutralization partially reversed the pro-proliferative effect of BEV in the medium non-renewed group, while exogenous bFGF attenuated the tumor cell growth inhibition of BEV in the medium-renewed group. Our data explain the controversy over the direct antitumor effect of BEV in different studies from the perspective of the compensatory autocrine cytokines in tumor cells.
(© 2024. Pleiades Publishing, Ltd.)
References: Bergers, G. and Benjamin, L.E., Tumorigenesis and the angiogenic switch, Nat. Rev. Cancer, 2003, vol. 3, no. 6, pp. 401–410. https://doi.org/10.1038/nrc1093. (PMID: 10.1038/nrc109312778130)
Hicklin, D.J. and Ellis, L.M., Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis, J. Clin. Oncol., 2005, vol. 23, no. 5, pp. 1011–1027. https://doi.org/10.1200/jco.2005.06.081. (PMID: 10.1200/jco.2005.06.08115585754)
Huinen, Z.R., Huijbers, E.J.M., Van Beijnum, J.R., Nowak-Sliwinska, P., and Griffioen, A.W., Anti-angiogenic agents—overcoming tumour endothelial cell anergy and improving immunotherapy outcomes, Nat. Rev. Clin. Oncol., 2021, vol. 18, no. 8, pp. 527–540. https://doi.org/10.1038/s41571-021-00496-y. (PMID: 10.1038/s41571-021-00496-y33833434)
Mohammadi, M., Aghanajafi, C., Soltani, M., and Raahemifar, K., Numerical investigation on the anti-angiogenic therapy-induced normalization in solid tumors, Pharmaceutics, 2022, vol. 14, no. 2, p. 363. https://doi.org/10.3390/pharmaceutics14020363. (PMID: 10.3390/pharmaceutics14020363352140958877966)
Itatani, Yo., Kawada, K., Yamamoto, T., and Sakai, Yo., Resistance to anti-angiogenic therapy in cancer—alterations to anti-VEGF pathway, Int. J. Mol. Sci., 2018, vol. 19, no. 4, p. 1232. https://doi.org/10.3390/ijms19041232. (PMID: 10.3390/ijms19041232296700465979390)
Tamura, R., Tanaka, T., Miyake, K., Yoshida, K., and Sasaki, H., Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response, Brain Tumor Pathol., 2017, vol. 34, no. 2, pp. 62–77. https://doi.org/10.1007/s10014-017-0284-x. (PMID: 10.1007/s10014-017-0284-x28386777)
Huang, M., Lin, Yu., Wang, Ch., Deng, L., Chen, M., Assaraf, Ye.G., Chen, Z.-S., Ye, W., and Zhang, D., New insights into antiangiogenic therapy resistance in cancer: mechanisms and therapeutic aspects, Drug Resist. Updates, 2022, vol. 64, p. 100849. https://doi.org/10.1016/j.drup.2022.100849.
Chen, Zh., Xu, N., Zhao, Ch., Xue, T., Wu, X., and Wang, Zh., Bevacizumab combined with chemotherapy vs single-agent therapy in recurrent glioblastoma: evidence from randomized controlled trials, Cancer Manage. Res., 2018, vol. volume 10, pp. 2193–2205. https://doi.org/10.2147/cmar.s173323.
Xiong, L., Lou, Y., and Wang, L., Effect of bevacizumab combined with first-line chemotherapy on metastatic colorectal cancer, Am. J. Transl. Res., 2021, vol. 13, pp. 3609–3617. https://doi.org/10.31525/ct1-nct04247984. (PMID: 10.31525/ct1-nct04247984340175428129318)
Chen, C.T. and Hung, M.C., Beyond anti-VEGF: dual-targeting antiangiogenic and antiproliferative therapy, Am. J. Transl. Res., 2013, vol. 5, pp. 393–403. (PMID: 237241633665913)
Gyanchandani, R., Alves, M.V.O., Myers, J.N., and Kim, S., A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma, Mol. Cancer Res., 2013, vol. 11, no. 12, pp. 1585–1596. https://doi.org/10.1158/1541-7786.mcr-13-0358. (PMID: 10.1158/1541-7786.mcr-13-0358240927753955724)
Okamoto, S., Nitta, M., Maruyama, T., Sawada, T., Komori, T., Okada, Yo., and Muragaki, Yo., Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas, Brain Tumor Pathol., 2016, vol. 33, no. 2, pp. 129–136. https://doi.org/10.1007/s10014-016-0248-6. (PMID: 10.1007/s10014-016-0248-626826105)
Zahra, F.T., Sajib, Md.S., and Mikelis, C.M., Role of bFGF in acquired resistance upon anti-VEGF therapy in cancer, Cancers, 2021, vol. 13, no. 6, p. 1422. https://doi.org/10.3390/cancers13061422. (PMID: 10.3390/cancers13061422338046818003808)
Wei, P., Zhang, Zh., Lin, M., Zhou, B., and Wang, Zh., Bevacizumab has bidirectional regulatory effects on the secretion of basic fibroblast growth factor in glioma cells, Cytokine, 2020, vol. 129, p. 155022. https://doi.org/10.1016/j.cyto.2020.155022.
Wei, P., Wang, M., Lin, M., and Wang, Zh., Tetrazolium–based colorimetric assays underestimat the direct antitumor effects of anti-VEGF agent bevacizumab, Toxicol. In Vitro, 2023, vol. 91, p. 105631. https://doi.org/10.1016/j.tiv.2023.105631.
Nugue, G., Bidart, M., Arlotto, M., Mousseau, M., Berger, F., and Pelletier, L., Monitoring monoclonal antibody delivery in oncology: the example of bevacizumab, PLoS One, 2013, vol. 8, no. 8, p. e72021. https://doi.org/10.1371/journal.pone.0072021.
Hasan, M.R., Ho, Sh.H.Y., Owen, D.A., and Tai, I.T., Inhibition of VEGF induces cellular senescence in colorectal cancer cells, Int. J. Cancer, 2011, vol. 129, no. 9, pp. 2115–2123. https://doi.org/10.1002/ijc.26179. (PMID: 10.1002/ijc.2617921618508)
Hattori, Ya., Kurozumi, K., Otani, Yo., Uneda, A., Tsuboi, N., Makino, K., Hirano, Sh., Fujii, K., Tomita, Yu., Oka, T., Matsumoto, Yu., Shimazu, Yo., Michiue, H., Kumon, H., and Date, I., Combination of Ad-SGE-REIC and bevacizumab modulates glioma progression by suppressing tumor invasion and angiogenesis, PLoS One, 2022, vol. 17, no. 8, p. e0273242. https://doi.org/10.1371/journal.pone.0273242.
Palfi, M.-C., Muşat, O., Şeclăman, E.P., Munteanu, M., Milcu, A.-I., Iordache, A., Dolghi, A., Istrate, S.L., Barac, I.R., and Borugă, V.M., In vitro and in ovo experimental study of two anti-VEGF agents used in ophthalmology, Rom. J. Morphol. Embryol., 2021, vol. 62, no. 3, pp. 801–806. https://doi.org/10.47162/rjme.62.3.18. (PMID: 10.47162/rjme.62.3.1835263409)
Bi, J., Dixit, G., Zhang, Yu., Devor, E., Losh, H., Newtson, A., Coleman, K., Santillan, D., Maretzky, T., Thiel, K., and Leslie, K., Advantages of tyrosine kinase anti-angiogenic cediranib over bevacizumab: cell cycle abrogation and synergy with chemotherapy, Pharmaceuticals, 2021, vol. 14, no. 7, p. 682. https://doi.org/10.3390/ph14070682. (PMID: 10.3390/ph14070682343581088308742)
Liu, Zh., Qin, T., Yuan, X., Yang, J., Shi, W., Zhang, X., Jia, Ya., Liu, Sh., Wang, J., and Li, K., Anlotinib downregulates RGC32 which provoked by bevacizumab, Front. Oncol., 2022, vol. 12, p. 875888. https://doi.org/10.3389/fonc.2022.875888.
El-Hajjar, L., Jalaleddine, N., Shaito, A., Zibara, K., Kazan, J.M., El-Saghir, J., and El-Sabban, M., Bevacizumab induces inflammation in MDA-MB-231 breast cancer cell line and in a mouse model, Cell. Signalling, 2019, vol. 53, pp. 400–412. https://doi.org/10.1016/j.cellsig.2018.11.007. (PMID: 10.1016/j.cellsig.2018.11.00730445167)
Liang, J., Li, Zh., Li, J., Peng, Ch., Dai, W., He, H., Zeng, S., and Xie, Ch., Application of IVIM-DWI in detecting the tumor vasculogenic mimicry under antiangiogenesis combined with oxaliplatin treatment, Front. Oncol., 2020, vol. 10, p. 1376. https://doi.org/10.3389/fonc.2020.01376. (PMID: 10.3389/fonc.2020.01376329741367461873)
Miranda-Gonçalves, V., Cardoso-Carneiro, D., Valbom, I., Cury, F.P., Silva, V.A., Granja, S., Reis, R.M., Baltazar, F., and Martinho, O., Metabolic alterations underlying Bevacizumab therapy in glioblastoma cells, Oncotarget, 2017, vol. 8, no. 61, pp. 103657–103670. https://doi.org/10.18632/oncotarget.21761. (PMID: 10.18632/oncotarget.21761292625915732757)
Wang, L.L., Hu, R.C., Dai, A.G., and Tan, S.X., Bevacizumab induces A549 cell apoptosis through the mechanism of endoplasmic reticulum stress in vitro, Int. J. Clin. Exp. Pathol., 2015, vol. 8, pp. 5291–5299. (PMID: 261912304503101)
Huang, H., Song, J., Liu, Zh., Pan, L., and Xu, G., Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway, Oncol. Lett., 2018, vol. 15, pp. 1487–1494. https://doi.org/10.3892/ol.2017.7446. (PMID: 10.3892/ol.2017.744629434840)
Zhao, Zh., Xia, G., Li, N., Su, R., Chen, X., and Zhong, L., Autophagy inhibition promotes bevacizumab-induced apoptosis and proliferation inhibition in colorectal cancer cells, J. Cancer, 2018, vol. 9, no. 18, pp. 1407–1416. https://doi.org/10.7150/jca.24201. (PMID: 10.7150/jca.24201)
فهرسة مساهمة: Keywords: basic fibroblast growth factor; bevacizumab; direct antitumor effect; tumor cells
المشرفين على المادة: 103107-01-3 (Fibroblast Growth Factor 2)
2S9ZZM9Q9V (Bevacizumab)
0 (Culture Media)
0 (Vascular Endothelial Growth Factor A)
0 (Angiogenesis Inhibitors)
0 (Antineoplastic Agents, Immunological)
تواريخ الأحداث: Date Created: 20240713 Date Completed: 20240722 Latest Revision: 20240821
رمز التحديث: 20240821
DOI: 10.1134/S1607672924600283
PMID: 39002014
قاعدة البيانات: MEDLINE
الوصف
تدمد:1608-3091
DOI:10.1134/S1607672924600283