دورية أكاديمية

Increased extinction probability and altered physiological characteristics in pirimicarb-tolerant Daphnia magna.

التفاصيل البيبلوغرافية
العنوان: Increased extinction probability and altered physiological characteristics in pirimicarb-tolerant Daphnia magna.
المؤلفون: Ishimota M; Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan. mota-4024will@hotmail.co.jp., Kodama M; Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan., Tomiyama N; Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan., Ohyama K; Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jul; Vol. 31 (35), pp. 47690-47700. Date of Electronic Publication: 2024 Jul 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Carbamates* , Daphnia magna*/drug effects , Daphnia magna*/physiology, Animals ; Pyrimidines ; Water Pollutants, Chemical/toxicity
مستخلص: We evaluated the physiological characteristics of chemical-tolerant cladocerans. Over the course of 26 generations (F25), Daphnia magna was continuously exposed to pirimicarb (carbamate) solutions (0, 3.8, 7.5, and 15 µg/L) in sub-lethal or lethal levels. The 48 h EC 50 values (29.2-29.9 µg/L) for 7.5 and 15 µg/L exposure groups were found to be nearly two times higher than that in the control (17.2 µg/L). Subsequently, we investigated whether the extinction probability changed when the chemical-tolerant daphnids were fed two different types of food, Chlorella vulgaris and Synechococcus leopoliensis. Furthermore, we ascertained how chemical tolerance influences respiration and depuration rates. The 48 h EC 50 value was positively related to the extinction probability when the daphnids were fed S. leopoliensis. Because the measured lipid content of S. leopoliensis was three times lower than that of C. vulgaris, the tolerant daphnids struggled under nutrient-poor conditions. Respiration rates across all pirimicarb treatment groups were higher than those in the control group, suggesting that they may produce large amounts of energy through respiration to maintain the chemical tolerance. Since the pirimicarb depuration rate for 7.5 µg/L exposure groups was higher than that in the control, the altered metabolic/excretion rate may be one factor for acquiring chemical tolerance. These altered physiological characteristics are crucial parameters for evaluating the mechanisms of chemical tolerance and associated fitness costs.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Alkimin GD, Nunes B, Soares AM, Bellot M, Gómez-Canela C, Barata C (2020) Daphnia magna responses to fish kairomones and chlorpromazine exposures. Chem Biol Interact 325:109123. https://doi.org/10.1016/j.cbi.2020.109123. (PMID: 10.1016/j.cbi.2020.109123)
Bansal SK, Verma SR, Gupta AK, Rani S, Dalela RC (1979) Pesticide-induced alterations in the oxygen uptake rate of a freshwater major carp Labeo rohita. Ecotoxicol Environ Saf 3:374–382. https://doi.org/10.1016/0147-6513(79)90027-7. (PMID: 10.1016/0147-6513(79)90027-7)
Barata C, Baird DJ, Amat F, Soares AMVM (2000) Comparing population response to contaminants between laboratory and field: an approach using Daphnia magna ephippial egg banks. Funct Ecol 14:513–523. https://doi.org/10.1046/j.1365-2435.2000.00445.x. (PMID: 10.1046/j.1365-2435.2000.00445.x)
Brown AH, Yan ND (2015) Food quantity affects the sensitivity of Daphnia to road salt. Environ Sci Technol 49:4673–4680. https://doi.org/10.1021/es5061534. (PMID: 10.1021/es5061534)
Castro M, Sobek A, Yuan B, Breitholtz M (2019) Bioaccumulation potential of CPs in aquatic organisms: uptake and depuration in Daphnia magna. Environ Sci Technol 53:9533–9541. https://doi.org/10.1021/acs.est.9b01751. (PMID: 10.1021/acs.est.9b01751)
Cerbin S, Kraak MHS, de Voogt P, Visser PM, Van Donk E (2010) Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria. Hydrobiologia 643:129–138. https://doi.org/10.1007/s10750-010-0130-1. (PMID: 10.1007/s10750-010-0130-1)
Coors A, Vanoverbeke J, De Bie T, De Meester L (2009) Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquat Toxicol 95:71–79. https://doi.org/10.1016/j.aquatox.2009.08.004. (PMID: 10.1016/j.aquatox.2009.08.004)
Deng J, Shan K, Shi K, Qian SS, Zhang Y, Qin B, Zhu G (2023) Nutrient reduction mitigated the expansion of cyanobacterial blooms caused by climate change in Lake Taihu according to Bayesian network models. Water Res 236:119946. https://doi.org/10.1016/j.watres.2023.119946. (PMID: 10.1016/j.watres.2023.119946)
Elendt B-P, Bias W-R (1990) Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna. Water Res 24:1157–1167. https://doi.org/10.1016/0043-1354(90)90180-E. (PMID: 10.1016/0043-1354(90)90180-E)
European Commission (2023) Guidance document on pesticide analytical methods for risk assessment and post-approval control and monitoring purposes, Ref: SANTE/2020/12830, rev.2.
Fox J, Weisberg S (2019) An R companion to applied regressions, 3rd ed. https://www.john-fox.ca/Companion/index.html.
Friberg-Jensen U, Nachman G, Christoffersen KS (2010) Early signs of lethal effects in Daphnia magna (Branchiopoda, Cladocera) exposed to the insecticide cypermethrin and the fungicide azoxystrobin. Environ Toxicol Chem 29:2371–2378. https://doi.org/10.1002/etc.290. (PMID: 10.1002/etc.290)
Gergs A, Zenker A, Grimm V, Preuss TG (2013) Chemical and natural stressors combined: from cryptic effects to population extinction. Sci Rep 3:2036. https://doi.org/10.1038/srep02036. (PMID: 10.1038/srep02036)
Gerhard D, Ritz C (2017) Marginalization in nonlinear mixed-effects models with an application to dose-response analysis.
Glazier DS (1991) Separating the respiration rates of embryos and brooding females of Daphnia magna: implications for the cost of brooding and the allometry of metabolic rate. Limnol Oceanogr 36:354–361. https://doi.org/10.4319/lo.1991.36.2.0354. (PMID: 10.4319/lo.1991.36.2.0354)
Gophen M (2021) Climate change-enhanced cyanobacteria domination in Lake Kinneret: a retrospective overview. Water 13:163. (PMID: 10.3390/w13020163)
Heisey D, Porter KG (1977) The effect of ambient oxygen concentration on filtering and respiration rates of Daphnia galeata mendotae and Daphnia magna. Limnol Oceanogr 22:839–845. https://doi.org/10.4319/lo.1977.22.5.0839. (PMID: 10.4319/lo.1977.22.5.0839)
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70.
Hosmer DW, Lemeshow S (2000) Appl Logist Regression, 2nd edn. https://doi.org/10.1002/0471722146.
Hothorn T, Bretz F, Westfall P et al (2022) Multcomp: simultaneous inference in general parametric models, Accessed 28 June 2023.
Ieromina O, Peijnenburg WJGM, de Snoo G, Müller J, Knepper TP, Vijver MG (2014) Impact of imidacloprid on Daphnia magna under different food quality regimes. Environ Toxicol Chem 33:621–631. https://doi.org/10.1002/etc.2472. (PMID: 10.1002/etc.2472)
Ishimota M, RisakoTajiki-Nishino FT, Tomiyama N, Sakamoto M, Ohyama K (2020a) Long-term tolerance acquisition and changes in acetylcholinesterase activity in three cladoceran species after a 48-h pulsed exposure to pirimicarb. Water Air Soil Pollut 231:287. https://doi.org/10.1007/s11270-020-04670-3. (PMID: 10.1007/s11270-020-04670-3)
Ishimota M, Tajiki-Nishino R, Fukuyama T, Tomiyama N (2020b) Rapid adaptation of Chironomus yoshimatsui to acetylcholinesterase inhibitors (pyraclofos and pirimicarb) in a multi-generation study. J Environ Sci Health B 55:429–437. https://doi.org/10.1080/03601234.2019.1708165. (PMID: 10.1080/03601234.2019.1708165)
Ishimota M, Kodama M, Tomiyama N (2022) Possible enzymatic mechanism underlying chemical tolerance and characteristics of tolerant population in Scapholeberis kingi. Environ Sci Pollut Res 29:18989–19002. https://doi.org/10.1007/s11356-021-17071-8. (PMID: 10.1007/s11356-021-17071-8)
Ishimota M, Kodama M, Tomiyama N, Ohyama K (2024) Chemical tolerance related to the ABC transporter gene and DNA methylation in cladocera (Daphnia magna). Environ Toxicol 39:1978–1988. https://doi.org/10.1002/tox.24077. (PMID: 10.1002/tox.24077)
Jansen M, Stoks R, Coors A, De Meester L (2010) No evidence for a cost of selection by carbaryl exposure in terms of vulnerability to fish predation in Daphnia magna. Hydrobiologia 643:123–128. https://doi.org/10.1007/s10750-010-0129-7. (PMID: 10.1007/s10750-010-0129-7)
Kosten S, Huszar VLM, Bécares E, Costa LS, van Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Chang Biol 18:118–126. https://doi.org/10.1111/j.1365-2486.2011.02488.x. (PMID: 10.1111/j.1365-2486.2011.02488.x)
Li H, Zhang Q, Su H, You J, Wang W-X (2021) High tolerance and delayed responses of Daphnia magna to neonicotinoid insecticide imidacloprid: toxicokinetic and toxicodynamic modeling. Environ Sci Technol 55:458–467. https://doi.org/10.1021/acs.est.0c05664. (PMID: 10.1021/acs.est.0c05664)
Liess M, Foit K, Knillmann S, Schäfer RB, Liess H-D (2016) Predicting the synergy of multiple stress effects. Sci Rep 6:32965. https://doi.org/10.1038/srep32965. (PMID: 10.1038/srep32965)
Maki AW, Stewart KW, Silvey JKG (1973) The effects of Dibrom on respiratory activity of the stonefly, Hydroperla crosbyi, hellgrammite, Corydalus cornutus and the golden shiner, Notemigonus crysoleucas. Trans Am Fish Soc 102:806–815. https://doi.org/10.1577/1548-8659(1973)102%3c806:TEODOR%3e2.0.CO;2. (PMID: 10.1577/1548-8659(1973)102<806:TEODOR>2.0.CO;2)
Markensten H, Moore K, Persson I (2010) Simulated lake phytoplankton composition shifts toward cyanobacteria dominance in a future warmer climate. Ecol Appl 20:752–767. https://doi.org/10.1890/08-2109.1. (PMID: 10.1890/08-2109.1)
Martins JC, Saker ML, Teles LFO, Vasconcelos VM (2007) Oxygen consumption by Daphnia magna straus as a marker of chemical stress in the aquatic environment. Environ Toxicol Chem 26:1987–1991. https://doi.org/10.1897/07-051R.1. (PMID: 10.1897/07-051R.1)
Menger JP, Ribeiro AV, Potter BD, Valmorbida I, Hodgson EW, Knodel JJ, Koch RL (2022) Lack of evidence for fitness costs in soybean aphid (Hemiptera: Aphididae) with resistance to pyrethroid insecticides in the upper midwest region of the United States. J Econ Entomol 115:1191–1202. https://doi.org/10.1093/jee/toac096. (PMID: 10.1093/jee/toac096)
Morris William F, Doak Daniel F (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, Sunderland, MA.
Muggelberg LL, Huff Hartz KE, Nutile SA, Harwood AD, Heim JR, Derby AP, Weston DP, Lydy MJ (2017) Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish. Environ Pollut 220:375–382. https://doi.org/10.1016/j.envpol.2016.09.073. (PMID: 10.1016/j.envpol.2016.09.073)
Muyssen BTA, Bossuyt BTA, Janssen CR (2005) Inter- and intra-species variation in acute zinc tolerance of field-collected cladoceran populations. Chemosphere 61:1159–1167. https://doi.org/10.1016/j.chemosphere.2005.02.076. (PMID: 10.1016/j.chemosphere.2005.02.076)
Nusbaumer D, Marques da Cunha L, Wedekind C (2021) Testing for population differences in evolutionary responses to pesticide pollution in brown trout (Salmo trutta). Evol Appl 14:462–475. https://doi.org/10.1111/eva.13132. (PMID: 10.1111/eva.13132)
OECD (2004): Guidelines for the testing of chemicals, Section 2 Test No. 202 Daphnia sp, Acute Immobilization Test. https://doi.org/10.1787/20745761 . Accessed 28 June 2023.
OECD (2012) Guidelines of chemicals for the testing, Section 2 Test No.211. Daphnia magna Reproduction Test. https://doi.org/10.1787/9789264185203-en . Accessed 28 June 2023.
Osoro JK, Machani MG, Ochomo E, Wanjala C, Omukunda E, Munga S, Githeko AK, Yan G, Afrane YA (2021) Insecticide resistance exerts significant fitness costs in immature stages of Anopheles gambiae in western Kenya. Malar J 20:259. https://doi.org/10.1186/s12936-021-03798-9. (PMID: 10.1186/s12936-021-03798-9)
Petersen A, Aarestrup FM, Olsen JE (2009) The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol Lett 299:53–59. https://doi.org/10.1111/j.1574-6968.2009.01734.x. (PMID: 10.1111/j.1574-6968.2009.01734.x)
R Core Team (2020; 2021) R: A language and environment for statistical. Computing, Ver 3.6.1, 4.1.0. MSOR connections, 1. R Foundation for Statistical Computing, Vienna, Austria.
Ritz C, Cedergreen N, Jensen J, Streibig J (2006) Relative potency in nonsimilar dose–response curves. Weed Sci 54: 407–412. https:// https://doi.org/10.1614/WS-05-185R.1.
Salin K, Auer SK, Rey B, Selman C, Metcalfe NB (2015) Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proceedings Biological Sciences 282:20151028. https://doi.org/10.1098/rspb.2015.1028. (PMID: 10.1098/rspb.2015.1028)
Stubben C, Milligan B (2007) Estimating and analyzing demographic models using the popbio package in R. J Stat Softw 22: 1–23. https://doi.org/10.18637/jss.v022.i11.
Schaefer AM, Yrastorza L, Stockley N, Harvey K, Harris N, Grady R, Sullivan J, McFarland M, Reif JS (2020) Exposure to microcystin among coastal residents during a cyanobacteria bloom in Florida. Harmful Algae 92:101769. https://doi.org/10.1016/j.hal.2020.101769. (PMID: 10.1016/j.hal.2020.101769)
Shaw JR, Colbourne JK, Glaholt SP, Turner E, Folt CL, Chen CY (2019) Dynamics of cadmium acclimation in Daphnia pulex: linking fitness costs, cross-tolerance, and hyper-induction of metallothionein. Environ Sci Technol 53:14670–14678. https://doi.org/10.1021/acs.est.9b05006. (PMID: 10.1021/acs.est.9b05006)
Shephard AM, Zambre AM, Snell-Rood EC (2021) Evaluating costs of heavy metal tolerance in a widely distributed, invasive butterfly. Evol Appl 14:1390–1402. https://doi.org/10.1111/eva.13208. (PMID: 10.1111/eva.13208)
Siddique A, Shahid N, Liess M (2021) Multiple stress reduces the advantage of pesticide adaptation. Environ Sci Technol 55:15100–15109. https://doi.org/10.1021/acs.est.1c02669. (PMID: 10.1021/acs.est.1c02669)
Tanaka Y (2003) Ecological risk assessment of pollutant chemicals: extinction risk based on population-level effects. Chemosphere 53:421–425. https://doi.org/10.1016/S0045-6535(03)00016-X. (PMID: 10.1016/S0045-6535(03)00016-X)
Tanaka Y, Tatsuta H (2013) Retrospective estimation of population-level effect of pollutants based on local adaptation and fitness cost of tolerance. Ecotoxicology (london, England) 22:795–802. https://doi.org/10.1007/s10646-013-1081-x. (PMID: 10.1007/s10646-013-1081-x)
Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, Davis TW, Paerl HW, Huisman J (2016) How rising CO 2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159. https://doi.org/10.1016/j.hal.2015.12.006. (PMID: 10.1016/j.hal.2015.12.006)
Wacker A, Martin-Creuzburg D (2007) Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct Ecol 21:738–747. https://doi.org/10.1111/j.1365-2435.2007.01274.x. (PMID: 10.1111/j.1365-2435.2007.01274.x)
Waiwood KG, Johansen PH (1974) Oxygen consumption and activity of the white sucker (Catostomus commersoni), in lethal and nonlethal levels of the organochlorine insecticide, methoxychlor. Water Res 8:401–406. https://doi.org/10.1016/0043-1354(74)90070-0. (PMID: 10.1016/0043-1354(74)90070-0)
Wang X, Shen Z, Miao X (2016) Nitrogen and hydrophosphate affects glycolipids composition in microalgae. Sci Rep 6:30145. https://doi.org/10.1038/srep30145. (PMID: 10.1038/srep30145)
Warming TP, Mulderij G, Christoffersen KS (2009) Clonal variation in physiological responses of Daphnia magna to the strobilurin fungicide azoxystrobin. Environ Toxicol Chem 28:374–380. https://doi.org/10.1897/08-279.1. (PMID: 10.1897/08-279.1)
Weir SM, Salice CJ (2021) Investigating potential toxic effects of pollutants on population growth rates and probability of extinction for a representative squamate. Ecotoxicology (london, England) 30:175–186. https://doi.org/10.1007/s10646-020-02289-y. (PMID: 10.1007/s10646-020-02289-y)
Zhang LJ, Jing YP, Li XH, Li CW, Bourguet D, Wu G (2015) Temperature-sensitive fitness cost of insecticide resistance in Chinese populations of the diamondback moth Plutella xylostella. Mol Ecol 24:1611–1627. https://doi.org/10.1111/mec.13133. (PMID: 10.1111/mec.13133)
فهرسة مساهمة: Keywords: Carbamates; Cladocera; Depuration rate; Extinction probability; Respiration rate; Tolerance
المشرفين على المادة: 0 (Carbamates)
1I93PS935T (pirimicarb)
0 (Pyrimidines)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240713 Date Completed: 20240803 Latest Revision: 20240805
رمز التحديث: 20240806
DOI: 10.1007/s11356-024-34386-4
PMID: 39002080
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-34386-4