دورية أكاديمية

Hydrocarbon Formation from Syngas with In-Operando Monitoring of Cobalt- and Manganese-Based (pre)Catalysts Using X-ray Diffraction.

التفاصيل البيبلوغرافية
العنوان: Hydrocarbon Formation from Syngas with In-Operando Monitoring of Cobalt- and Manganese-Based (pre)Catalysts Using X-ray Diffraction.
المؤلفون: Bhullar RK; Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19086, United States., Xu W; X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States., Zdilla MJ; Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19086, United States.
المصدر: ACS omega [ACS Omega] 2024 Jun 25; Vol. 9 (27), pp. 29917-29927. Date of Electronic Publication: 2024 Jun 25 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101691658 Publication Model: eCollection Cited Medium: Internet ISSN: 2470-1343 (Electronic) Linking ISSN: 24701343 NLM ISO Abbreviation: ACS Omega Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Chemical Society, [2016]-
مستخلص: Two-layered metal oxides (LiCoO 2 and cobalt-doped K n MnO 2 , n < 1) were explored as precatalysts for nanoconfined cobalt-based Fischer-Tropsch catalysts for conversion of syngas (CO and H 2 ) to hydrocarbons. Ex situ, in situ, and PDF XRD analyses are presented. Based on in situ XRD analysis, LiCoO 2 underwent reduction to predominantly cubic and hexagonal phases of cobalt metal. Reaction with syngas resulted in the generation of carbon, cobalt carbide, and lithium carbonate, in addition to the metallic cobalt phases. In the case of cobalt-doped birnessite, catalyst activation converted the birnessite phase to manganite and the cobalt to elemental cobalt, along with similar lithium and carbon phases. Conversion of syngas to C 1 through C 7 products was observed. The best conversions were observed for the LiCoO 2 precursor catalyst, with generally a low olefin-to-paraffin ratio. While the conversions for the cobalt-doped birnessite precatalyst were generally lower, with lower chain lengths (up to C 5 ), these catalysts gave a strikingly high olefin-to-paraffin ratio: in the best case, greater than 20:1.
Competing Interests: The authors declare no competing financial interest.
(© 2024 The Authors. Published by American Chemical Society.)
References: J Am Chem Soc. 2013 Nov 6;135(44):16284-7. (PMID: 24147726)
ChemSusChem. 2014 Dec;7(12):3496-504. (PMID: 25138656)
J Am Chem Soc. 2006 Mar 29;128(12):3956-64. (PMID: 16551103)
J Am Chem Soc. 2013 Feb 13;135(6):2273-8. (PMID: 23339635)
Nat Commun. 2014 Jul 04;5:4345. (PMID: 24993836)
Nat Commun. 2019 Jan 11;10(1):167. (PMID: 30635560)
Inorg Chem. 2018 Jan 16;57(2):557-564. (PMID: 29300462)
Inorg Chem. 2018 Oct 15;57(20):12953-12960. (PMID: 30277383)
J Am Chem Soc. 2009 May 27;131(20):7197-203. (PMID: 19402702)
Nanoscale Adv. 2020 Sep 15;2(10):4908-4917. (PMID: 36132935)
تواريخ الأحداث: Date Created: 20240715 Latest Revision: 20240716
رمز التحديث: 20240716
مُعرف محوري في PubMed: PMC11238217
DOI: 10.1021/acsomega.4c04553
PMID: 39005807
قاعدة البيانات: MEDLINE
الوصف
تدمد:2470-1343
DOI:10.1021/acsomega.4c04553