دورية أكاديمية

Mid1 aggravates hepatic ischemia-reperfusion injury by inducing immune cell infiltration.

التفاصيل البيبلوغرافية
العنوان: Mid1 aggravates hepatic ischemia-reperfusion injury by inducing immune cell infiltration.
المؤلفون: Li J; Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China., Jin C; Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China., Li Y; Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China., Liu H; Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2024 Jul 31; Vol. 38 (14), pp. e23823.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: Reperfusion Injury*/metabolism , Reperfusion Injury*/pathology , Reperfusion Injury*/immunology , Mice, Inbred C57BL* , Kupffer Cells*/metabolism , Liver*/pathology , Liver*/metabolism, Animals ; Mice ; Male ; Neutrophil Infiltration ; Cytokines/metabolism ; Transcription Factors/metabolism ; Transcription Factors/genetics ; NF-kappa B/metabolism ; Apoptosis ; Inflammation/metabolism ; Inflammation/pathology ; Signal Transduction
مستخلص: Hepatic ischemia-reperfusion injury (HIRI) represents a major risk factor in liver transplantation and resection surgeries. Kupffer cells (KCs) produce proinflammatory cytokines and lead to hepatic neutrophil infiltration in the liver, which is one of the leading causes of HIRI. Mid1 is involved in immune infiltration, but the role of Mid1 remains poorly understood. Herin, our study aimed to investigate the effect of Mid1 on HIRI progression. Male C57BL/6 mice aged 6 weeks were used for the HIRI model established. The function of Mid1 on liver injury and hepatic inflammation was evaluated. In vitro, KCs were used to investigate the function and mechanism of Mid1 in modulating KC inflammation upon lipopolysaccharide (LPS) stimulation. We found that Mid1 expression was up-regulated upon HIRI. Mid1 inhibition alleviated liver damage, as evidenced by neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. In vitro experiments further revealed that Mid1 knockdown reduced the secretion of proinflammatory cytokines and chemokines in KCs. Moreover, silenced-Mid1 suppressed proinflammatory responses by the inhibition of NF-κB, JNK, and p38 signaling pathways. Taken together, Mid1 contributes to HIRI via regulating the proinflammatory response of KCs and inducing neutrophil infiltration. Targeting Mid1 may be a promising strategy to protect against HIRI.
(© 2024 Federation of American Societies for Experimental Biology.)
References: Peralta C, Jiménez‐Castro MB, Gracia‐Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol. 2013;59:1094‐1106.
Kaltenmeier C, Wang R, Popp B, Geller D, Tohme S, Yazdani HO. Role of immuno‐inflammatory signals in liver ischemia‐reperfusion injury. Cells. 2022;11:2222.
Jiménez‐Castro MB, Cornide‐Petronio ME, Gracia‐Sancho J, Peralta C. Inflammasome‐mediated inflammation in liver ischemia‐reperfusion injury. Cells. 2019;8:1131.
Huang H, Tohme S, Al‐Khafaji AB, et al. Damage‐associated molecular pattern‐activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62:600‐614.
Hirao H, Nakamura K, Kupiec‐Weglinski JW. Liver ischaemia‐reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol. 2022;19:239‐256.
de Rougemont O, Dutkowski P, Clavien PA. Biological modulation of liver ischemia‐reperfusion injury. Curr Opin Organ Transplant. 2010;15:183‐189.
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene. 2020;747:144655.
Cainarca S, Messali S, Ballabio A, Meroni G. Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum Mol Genet. 1999;8:1387‐1396.
Schweiger S, Schneider R. The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome. Bioessays. 2003;25:356‐366.
LeNoue‐Newton ML, Wadzinski BE, Spiller BW. The three Type 2A protein phosphatases, PP2Ac, PP4c and PP6c, are differentially regulated by Alpha4. Biochem Biophys Res Commun. 2016;475:64‐69.
Short KM, Hopwood B, Yi Z, Cox TC. MID1 and MID2 homo‐ and heterodimerise to tether the rapamycin‐sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X‐linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol. 2002;3:1.
Collison AM, Li J, de Siqueira AP, et al. TRAIL signals through the ubiquitin ligase MID1 to promote pulmonary fibrosis. BMC Pulm Med. 2019;19:31.
Collison A, Hatchwell L, Verrills N, et al. The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus‐induced asthma by inhibiting protein phosphatase 2A activity. Nat Med. 2013;19:232‐237.
Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N. MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development. 2010;137:2329‐2339.
Boding L, Hansen AK, Meroni G, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109‐3118.
Krauss S, Griesche N, Jastrzebska E, et al. Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1‐PP2A protein complex. Nat Commun. 2013;4:1511.
Köhler A, Demir U, Kickstein E, et al. A hormone‐dependent feedback‐loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling. Mol Cancer. 2014;13:146.
Demir U, Koehler A, Schneider R, Schweiger S, Klocker H. Metformin anti‐tumor effect via disruption of the MID1 translational regulator complex and AR downregulation in prostate cancer cells. BMC Cancer. 2014;14:52.
Rao X, Razavi M, Mihai G, et al. Dipeptidyl peptidase 4/Midline‐1 axis promotes T lymphocyte motility in atherosclerosis. Adv Sci (Weinh). 2023;10:e2204194.
Du F, Hawez A, Ding Z, et al. E3 ubiquitin ligase midline 1 regulates endothelial cell ICAM‐1 expression and neutrophil adhesion in abdominal sepsis. Int J Mol Sci. 2022;24:705.
Liggett JR, Kang J, Ranjit S, et al. Oral N‐acetylcysteine decreases IFN‐γ production and ameliorates ischemia‐reperfusion injury in steatotic livers. Front Immunol. 2022;13:898799.
Jaeschke H. Mechanisms of reperfusion injury after warm ischemia of the liver. J Hepato‐Biliary‐Pancreat Surg. 1998;5:402‐408.
Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec‐Weglinski JW. Ischaemia‐reperfusion injury in liver transplantation—from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013;10:79‐89.
Jaeschke H. Molecular mechanisms of hepatic ischemia‐reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol. 2003;284:G15‐G26.
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532‐1535.
Sun Q, He Q, Xu J, et al. Guanine nucleotide‐binding protein G(i)α2 aggravates hepatic ischemia‐reperfusion injury in mice by regulating MLK3 signaling. FASEB J. 2019;33:7049‐7060.
He J, Tang MY, Liu LX, et al. Myeloid deletion of Cdc42 protects liver from hepatic ischemia‐reperfusion injury via inhibiting macrophage‐mediated inflammation in mice. Cell Mol Gastroenterol Hepatol. 2024;17:965‐981.
Li Z, Zhang J, Mulholland M, Zhang W. mTOR activation protects liver from ischemia/reperfusion‐induced injury through NF‐κB pathway. FASEB J. 2017;31:3018‐3026.
Zhang Y, Liu X, She ZG, et al. Interferon regulatory factor 9 is an essential mediator of heart dysfunction and cell death following myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2014;109:434.
Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves toll‐like receptor 4 dependent reactive oxygen species production and calcium‐mediated signaling. J Exp Med. 2007;204:2913‐2923.
Chen Q, Gao C, Wang M, Fei X, Zhao N. TRIM18‐regulated STAT3 signaling pathway via PTP1B promotes renal epithelial‐mesenchymal transition, inflammation, and fibrosis in diabetic kidney disease. Front Physiol. 2021;12:709506.
Lai X, Gong J, Wang W, et al. Acetyl‐3‐aminoethyl salicylate ameliorates hepatic ischemia/reperfusion injury and liver graft survival through a high‐mobility group box 1/toll‐like receptor 4‐dependent mechanism. Liver Transpl. 2019;25:1220‐1232.
Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577‐594.e1.
Zhang H, Ni M, Wang H, et al. Gsk3β regulates the resolution of liver ischemia/reperfusion injury via MerTK. JCI Insight. 2023;8:e151819.
de Oliveira THC, Marques PE, Poosti F, et al. Intravital microscopic evaluation of the effects of a CXCR2 antagonist in a model of liver ischemia reperfusion injury in mice. Front Immunol. 2017;8:1917.
Hu B, Guo Y, Garbacz WG, et al. Fatty acid binding protein‐4 (FABP4) is a hypoxia inducible gene that sensitizes mice to liver ischemia/reperfusion injury. J Hepatol. 2015;63:855‐862.
Peng J, Li J, Huang J, et al. p300/CBP inhibitor A‐485 alleviates acute liver injury by regulating macrophage activation and polarization. Theranostics. 2019;9:8344‐8361.
Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306‐321.
Hu Y, Zhan F, Wang Y, et al. The Ninj1/Dusp1 axis contributes to liver ischemia reperfusion injury by regulating macrophage activation and neutrophil infiltration. Cell Mol Gastroenterol Hepatol. 2023;15:1071‐1084.
Hua S, Ma M, Fei X, Zhang Y, Gong F, Fang M. Glycyrrhizin attenuates hepatic ischemia‐reperfusion injury by suppressing HMGB1‐dependent GSDMD‐mediated kupffer cells pyroptosis. Int Immunopharmacol. 2019;68:145‐155.
Zhang L, Wang M, An R, et al. Activation of NLRP3 inflammasome via Drp1 overexpression in Kupffer cells aggravates ischemia‐reperfusion injury in hepatic steatosis. J Clin Transl Hepatol. 2023;11:1069‐1078.
Chen SN, Tan Y, Xiao XC, et al. Deletion of TLR4 attenuates lipopolysaccharide‐induced acute liver injury by inhibiting inflammation and apoptosis. Acta Pharmacol Sin. 2021;42:1610‐1619.
Tomiyama K, Ikeda A, Ueki S, et al. Inhibition of Kupffer cell‐mediated early proinflammatory response with carbon monoxide in transplant‐induced hepatic ischemia/reperfusion injury in rats. Hepatology. 2008;48:1608‐1620.
فهرسة مساهمة: Keywords: Kupffer cells; Mid1; hepatic ischemia–reperfusion injury; neutrophils
المشرفين على المادة: 0 (Cytokines)
0 (Transcription Factors)
0 (NF-kappa B)
تواريخ الأحداث: Date Created: 20240715 Date Completed: 20240715 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1096/fj.202400843R
PMID: 39008003
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-6860
DOI:10.1096/fj.202400843R