دورية أكاديمية

Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma.

التفاصيل البيبلوغرافية
العنوان: Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma.
المؤلفون: Li X; Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China., Hou W; Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China., Xiao C; State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China., Yang H; Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China., Zhao C; State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China., Cao D; Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China. caodan@scu.edu.cn.
المصدر: Cellular oncology (Dordrecht, Netherlands) [Cell Oncol (Dordr)] 2024 Jul 15. Date of Electronic Publication: 2024 Jul 15.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 101552938 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2211-3436 (Electronic) Linking ISSN: 22113428 NLM ISO Abbreviation: Cell Oncol (Dordr) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht : Springer
مستخلص: Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
(© 2024. Springer Nature Switzerland AG.)
References: P. Rawla, T. Sunkara, V. Gaduputi, Epidemiology of pancreatic Cancer: global trends, etiology and risk factors. World J. Oncol. 10(1), 10–27 (2019). https://doi.org/10.14740/wjon1166. (PMID: 10.14740/wjon1166308340486396775)
H. Sung, J. Ferlay, R.L. Siegel et al., Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660. (PMID: 10.3322/caac.2166033538338)
J.D. Mizrahi, R. Surana, J.W. Valle et al., Pancreatic cancer. Lancet. 395(10242), 2008–2020 (2020). https://doi.org/10.1016/s0140-6736(20)30974-0. (PMID: 10.1016/s0140-6736(20)30974-032593337)
N.A. Ullman, P.R. Burchard, R.F. Dunne et al., Immunologic strategies in pancreatic Cancer: making Cold tumors Hot. J. Clin. Oncol. 40(24), 2789–2805 (2022). https://doi.org/10.1200/jco.21.02616. (PMID: 10.1200/jco.21.02616358394459390820)
A.A. Connor, S. Gallinger, Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer. 22(3): 131– 42 (2022). https://doi.org/10.1038/s41568-021-00418-1.
C.J. Halbrook, C.A. Lyssiotis, M. Pasca di Magliano et al., Pancreatic cancer: advances and challenges. Cell. 186(8), 1729–1754 (2023). https://doi.org/10.1016/j.cell.2023.02.014. (PMID: 10.1016/j.cell.2023.02.0143705907010182830)
L.J. Padrón, D.M. Maurer, M.H. O’hara et al., Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 28(6), 1167–1177 (2022). https://doi.org/10.1038/s41591-022-01829-9. (PMID: 10.1038/s41591-022-01829-9356622839205784)
M.M. Wattenberg, D. Asch, S. Yu et al., Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br. J. Cancer. 122(3), 333–339 (2020). https://doi.org/10.1038/s41416-019-0582-7. (PMID: 10.1038/s41416-019-0582-731787751)
Z.A. Wainberg, H.S. Hochster, E.J. Kim et al., Open-label, phase I study of Nivolumab Combined with nab-Paclitaxel Plus Gemcitabine in Advanced Pancreatic Cancer. Clin. Cancer Res. 26(18), 4814–4822 (2020). https://doi.org/10.1158/1078-0432.Ccr-20-0099. (PMID: 10.1158/1078-0432.Ccr-20-009932554514)
S.M. Liudahl, C.B. Betts, S. Sivagnanam et al., Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features Associated with clinical outcome. Cancer Discov. 11(8), 2014–2031 (2021). https://doi.org/10.1158/2159-8290.Cd-20-0841. (PMID: 10.1158/2159-8290.Cd-20-0841337273098338775)
B. Uzunparmak, I.H. Sahin, Pancreatic cancer microenvironment: a current dilemma. Clin. Transl Med. 8(1), 2 (2019). https://doi.org/10.1186/s40169-019-0221-1. (PMID: 10.1186/s40169-019-0221-1306457016333596)
J. Watt, H.M. Kocher, The desmoplastic stroma of pancreatic cancer is a barrier to immune cell infiltration. Oncoimmunology. 2(12), e26788 (2013). https://doi.org/10.4161/onci.26788. (PMID: 10.4161/onci.26788244985553912010)
S. Zhang, W. Fang, S. Zhou et al., Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat. Commun. 14(1), 5123 (2023). https://doi.org/10.1038/s41467-023-40727-7. (PMID: 10.1038/s41467-023-40727-73761226710447466)
T. Krausgruber, N. Fortelny, V. Fife-Gernedl et al., Structural cells are key regulators of organ-specific immune responses. Nature. 583(7815), 296–302 (2020). https://doi.org/10.1038/s41586-020-2424-4. (PMID: 10.1038/s41586-020-2424-4326122327610345)
C. Neuzillet, A. Tijeras-Raballand, C. Ragulan et al., Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J. Pathol. 248(1), 51–65 (2019). https://doi.org/10.1002/path.5224. (PMID: 10.1002/path.5224305750306492001)
H. Huang, Z. Wang, Y. Zhang et al., Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40(6): 656– 73.e7 (2022). https://doi.org/10.1016/j.ccell.2022.04.011.
A. Lo, C.P. Li, E.L. Buza et al., Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma. JCI Insight. 2(19) (2017). https://doi.org/10.1172/jci.insight.92232.
X. Liu, J. Xu, B. Zhang et al., The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Mol. Cancer. 18(1), 184 (2019). https://doi.org/10.1186/s12943-019-1117-9. (PMID: 10.1186/s12943-019-1117-9318310076909567)
K. Chen, Q. Wang, M. Li et al., Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine. 66, 103315 (2021). https://doi.org/10.1016/j.ebiom.2021.103315. (PMID: 10.1016/j.ebiom.2021.103315338197398047497)
J.L. Carstens, P. Correa de Sampaio, D. Yang et al., Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017). https://doi.org/10.1038/ncomms15095. (PMID: 10.1038/ncomms15095284476025414182)
B.T. Grünwald, A. Devisme, G. Andrieux et al., Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell. 184(22), 5577–92e18 (2021). https://doi.org/10.1016/j.cell.2021.09.022. (PMID: 10.1016/j.cell.2021.09.02234644529)
B.A. Helmink, S.M. Reddy, J. Gao et al., B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 577(7791): 549– 55 (2020). https://doi.org/10.1038/s41586-019-1922-8.
Z.R. Qian, D.A. Rubinson, J.A. Nowak et al., Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol. 4(3), e173420 (2018). https://doi.org/10.1001/jamaoncol.2017.3420. (PMID: 10.1001/jamaoncol.2017.342029098284)
M. Peng, Y. Ying, Z. Zhang et al., Reshaping the pancreatic Cancer microenvironment at different stages with chemotherapy. Cancers (Basel). 15(9) (2023). https://doi.org/10.3390/cancers15092448.
C. Mota Reyes, S. Teller, A. Muckenhuber et al., Neoadjuvant therapy remodels the pancreatic Cancer Microenvironment via Depletion of Protumorigenic Immune cells. Clin. Cancer Res. 26(1), 220–231 (2020). https://doi.org/10.1158/1078-0432.Ccr-19-1864. (PMID: 10.1158/1078-0432.Ccr-19-186431585935)
A. Dias Costa, S.A. Väyrynen, A. Chawla et al., Neoadjuvant Chemotherapy is Associated with altered Immune Cell Infiltration and an anti-tumorigenic microenvironment in Resected Pancreatic Cancer. Clin. Cancer Res. 28(23), 5167–5179 (2022). https://doi.org/10.1158/1078-0432.Ccr-22-1125. (PMID: 10.1158/1078-0432.Ccr-22-112536129461)
M.H. Andersen, Novel immune modulatory vaccines targeting TGFβ. Cell. Mol. Immunol. 20(5), 551–553 (2023). https://doi.org/10.1038/s41423-023-01000-5. (PMID: 10.1038/s41423-023-01000-53697348410040921)
S. Li, H.X. Xu, C.T. Wu et al., Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis. 22(1), 15–36 (2019). https://doi.org/10.1007/s10456-018-9645-2. (PMID: 10.1007/s10456-018-9645-230168025)
de K.E. Visser, J.A. Joyce, The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 41(3), 374–403 (2023). https://doi.org/10.1016/j.ccell.2023.02.016. (PMID: 10.1016/j.ccell.2023.02.01636917948)
P.J. Campbell, S. Yachida, L.J. Mudie et al., The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 467(7319), 1109–1113 (2010). https://doi.org/10.1038/nature09460. (PMID: 10.1038/nature09460209811013137369)
S. Yachida, S. Jones, I. Bozic et al., Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 467(7319), 1114–1117 (2010). https://doi.org/10.1038/nature09515. (PMID: 10.1038/nature09515209811023148940)
H. Sakamoto, M.A. Attiyeh, J.M. Gerold et al., The Evolutionary origins of recurrent pancreatic Cancer. Cancer Discov. 10(6), 792–805 (2020). https://doi.org/10.1158/2159-8290.Cd-19-1508. (PMID: 10.1158/2159-8290.Cd-19-1508321932237323937)
K.S.S. Enfield, E. Colliver, C.S.Y. Lee et al., Spatial Architecture of myeloid and T cells orchestrates Immune Evasion and Clinical Outcome in Lung Cancer. Cancer Discov. (2024). https://doi.org/10.1158/2159-8290.Cd-23-1380. (PMID: 10.1158/2159-8290.Cd-23-13803858168511145179)
E. Hessmann, S.M. Buchholz, I.E. Demir et al., Microenvironmental determinants of pancreatic Cancer. Physiol. Rev. 100(4), 1707–1751 (2020). https://doi.org/10.1152/physrev.00042.2019. (PMID: 10.1152/physrev.00042.201932297835)
N. Niu, X. Shen, Z. Wang et al., Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell. 42(5): 869– 84.e9 (2024). https://doi.org/10.1016/j.ccell.2024.03.005.
C.J. Tape, S. Ling, M. Dimitriadi et al., Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation. Cell. 65(4): 910– 20 (2016). https://doi.org/10.1016/j.cell.2016.03.029.
C. Vennin, P. Mélénec, R. Rouet et al., CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10(1), 3637 (2019). https://doi.org/10.1038/s41467-019-10968-6. (PMID: 10.1038/s41467-019-10968-6314061636691013)
P. Bailey, D.K. Chang, K. Nones et al., Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 531(7592), 47–52 (2016). https://doi.org/10.1038/nature16965. (PMID: 10.1038/nature1696526909576)
V.T. Smit, A.J. Boot, A.M. Smits et al., KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 16(16), 7773–7782 (1988). https://doi.org/10.1093/nar/16.16.7773. (PMID: 10.1093/nar/16.16.77733047672338489)
A. Velez-Delgado, K.L. Donahue, K.L. Brown et al., Extrinsic KRAS Signaling shapes the pancreatic microenvironment through fibroblast reprogramming. Cell. Mol. Gastroenterol. Hepatol. 13(6), 1673–1699 (2022). https://doi.org/10.1016/j.jcmgh.2022.02.016. (PMID: 10.1016/j.jcmgh.2022.02.016352456879046274)
M. Chan-Seng-Yue, J.C. Kim, G.W. Wilson et al., Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52(2), 231–240 (2020). https://doi.org/10.1038/s41588-019-0566-9. (PMID: 10.1038/s41588-019-0566-931932696)
F. Puleo, R. Nicolle, Y. Blum et al., Stratification of pancreatic ductal adenocarcinomas based on Tumor and Microenvironment features. Gastroenterology. 155(6), 1999–2013e3 (2018). https://doi.org/10.1053/j.gastro.2018.08.033. (PMID: 10.1053/j.gastro.2018.08.03330165049)
W.Q. Wang, L. Liu, H.X. Xu et al., Infiltrating immune cells and gene mutations in pancreatic ductal adenocarcinoma. Br. J. Surg. 103(9), 1189–1199 (2016). https://doi.org/10.1002/bjs.10187. (PMID: 10.1002/bjs.1018727256393)
W.L. Hwang, K.A. Jagadeesh, J.A. Guo et al., Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54(8), 1178–1191 (2022). https://doi.org/10.1038/s41588-022-01134-8. (PMID: 10.1038/s41588-022-01134-83590274310290535)
D. Alonso-Curbelo, Y.J. Ho, C. Burdziak et al., A gene-environment-induced epigenetic program initiates tumorigenesis. Nature. 590(7847), 642–648 (2021). https://doi.org/10.1038/s41586-020-03147-x. (PMID: 10.1038/s41586-020-03147-x335366168482641)
D. Cui Zhou, R.G. Jayasinghe, S. Chen et al., Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat. Genet. 54(9), 1390–1405 (2022). https://doi.org/10.1038/s41588-022-01157-1. (PMID: 10.1038/s41588-022-01157-1359959479470535)
L.J. Bayne, G.L. Beatty, N. Jhala et al., Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 21(6), 822–835 (2012). https://doi.org/10.1016/j.ccr.2012.04.025. (PMID: 10.1016/j.ccr.2012.04.025226984063575028)
Y. Pylayeva-Gupta, K.E. Lee, C.H. Hajdu et al., Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 21(6), 836–847 (2012). https://doi.org/10.1016/j.ccr.2012.04.024. (PMID: 10.1016/j.ccr.2012.04.024226984073721510)
E.E. Montalvo-Javé, N. Nuño-Lámbarri, G.N. López-Sánchez et al., Pancreatic Cancer: genetic conditions and epigenetic alterations. J. Gastrointest. Surg. 27(5), 1001–1010 (2023). https://doi.org/10.1007/s11605-022-05553-0. (PMID: 10.1007/s11605-022-05553-036749558)
K.K. Mahadevan, K.M. Mcandrews, V.S. Lebleu et al., KRAS(G12D) inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8(+) T cells. Cancer Cell. 41(9), 1606–20e8 (2023). https://doi.org/10.1016/j.ccell.2023.07.002. (PMID: 10.1016/j.ccell.2023.07.00237625401)
A.D. Theocharis, S.S. Skandalis, C. Gialeli et al., Extracellular matrix structure. Adv. Drug Deliv Rev. 97, 4–27 (2016). https://doi.org/10.1016/j.addr.2015.11.001. (PMID: 10.1016/j.addr.2015.11.00126562801)
W.J. Ho, E.M. Jaffee, L. Zheng, The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 17(9), 527–540 (2020). https://doi.org/10.1038/s41571-020-0363-5. (PMID: 10.1038/s41571-020-0363-5323987067442729)
D. Lv, Y. Fei, H. Chen et al., Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front. Immunol. 15, 1340702 (2024). https://doi.org/10.3389/fimmu.2024.1340702. (PMID: 10.3389/fimmu.2024.13407023869027511058664)
X. Mao, J. Xu, W. Wang et al., Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer. 20(1), 131 (2021). https://doi.org/10.1186/s12943-021-01428-1. (PMID: 10.1186/s12943-021-01428-1346351218504100)
H. Mi, S. Sivagnanam, C.B. Betts et al., Quantitative spatial profiling of Immune populations in pancreatic ductal adenocarcinoma reveals Tumor Microenvironment Heterogeneity and Prognostic biomarkers. Cancer Res. 82(23), 4359–4372 (2022). https://doi.org/10.1158/0008-5472.Can-22-1190. (PMID: 10.1158/0008-5472.Can-22-1190361126439716253)
S. Yousuf, M. Qiu, L. Von Voith et al., Spatially resolved Multi-omics single-cell analyses inform mechanisms of Immune Dysfunction in Pancreatic Cancer. Gastroenterology. (2023). https://doi.org/10.1053/j.gastro.2023.05.036. (PMID: 10.1053/j.gastro.2023.05.03637263303)
Y. Masugi, T. Abe, A. Ueno et al., Characterization of spatial distribution of tumor-infiltrating CD8(+) T cells refines their prognostic utility for pancreatic cancer survival. Mod. Pathol. 32(10), 1495–1507 (2019). https://doi.org/10.1038/s41379-019-0291-z. (PMID: 10.1038/s41379-019-0291-z31186528)
M.H. Sherman, G.L. Beatty, Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annu. Rev. Pathol. 18, 123–148 (2023). https://doi.org/10.1146/annurev-pathmechdis-031621-024600. (PMID: 10.1146/annurev-pathmechdis-031621-02460036130070)
P.C. Tumeh, C.L. Harview, J.H. Yearley et al., PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515(7528), 568–571 (2014). https://doi.org/10.1038/nature13954. (PMID: 10.1038/nature13954254285054246418)
A.X. Zhu, A.R. Abbas, De M.R. Galarreta et al., Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 28(8), 1599–1611 (2022). https://doi.org/10.1038/s41591-022-01868-2. (PMID: 10.1038/s41591-022-01868-235739268)
K. Li, J.A. Tandurella, J. Gai et al., Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell. 40(11), 1374–91e7 (2022). https://doi.org/10.1016/j.ccell.2022.10.001. (PMID: 10.1016/j.ccell.2022.10.001363067929669212)
M. Ruterbusch, K.B. Pruner, L. Shehata et al., In vivo CD4(+) T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu. Rev. Immunol. 38, 705–725 (2020). https://doi.org/10.1146/annurev-immunol-103019-085803. (PMID: 10.1146/annurev-immunol-103019-08580332340571)
A. Takeuchi, T. Saito, CD4 CTL, a cytotoxic subset of CD4(+) T cells, their differentiation and function. Front. Immunol. 8, 194 (2017). https://doi.org/10.3389/fimmu.2017.00194. (PMID: 10.3389/fimmu.2017.00194282804965321676)
E. Elyada, M. Bolisetty, P. Laise et al., Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals Antigen-Presenting Cancer-Associated fibroblasts. Cancer Discov. 9(8), 1102–1123 (2019). https://doi.org/10.1158/2159-8290.Cd-19-0094. (PMID: 10.1158/2159-8290.Cd-19-0094311970176727976)
T. Komura, Y. Sakai, K. Harada et al., Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4 + T cells with clinical impact. Cancer Sci. 106(6), 672–686 (2015). https://doi.org/10.1111/cas.12663. (PMID: 10.1111/cas.12663258276214471781)
Y. Zhang, W. Yan, E. Mathew et al., CD4 + T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol Res. 2(5): 423– 35 (2014). https://doi.org/10.1158/2326-6066.Cir-14-0016-t.
C. Mota Reyes, E. Demir, K. Çifcibaşi et al., Regulatory T cells in pancreatic Cancer: of mice and men. Cancers (Basel). 14(19) (2022). https://doi.org/10.3390/cancers14194582.
B.P. Keenan, Y. Saenger, M.I. Kafrouni et al., A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology. 146(7), 1784–94e6 (2014). https://doi.org/10.1053/j.gastro.2014.02.055. (PMID: 10.1053/j.gastro.2014.02.05524607504)
Y. Zhang, J. Lazarus, N.G. Steele et al., Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis. Cancer Discov. 10(3): 422– 39 (2020). https://doi.org/10.1158/2159-8290.Cd-19-0958.
A.H. Ko, A.C. Jordan, E. Tooker et al., Dual targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in patients with metastatic pancreatic Cancer. Mol. Ther. 28(11), 2367–2378 (2020). https://doi.org/10.1016/j.ymthe.2020.07.017. (PMID: 10.1016/j.ymthe.2020.07.017327307447647666)
M.C.A. Wouters, B.H. Nelson, Prognostic significance of Tumor-infiltrating B cells and plasma cells in Human Cancer. Clin. Cancer Res. 24(24), 6125–6135 (2018). https://doi.org/10.1158/1078-0432.Ccr-18-1481. (PMID: 10.1158/1078-0432.Ccr-18-148130049748)
Y. Pylayeva-Gupta, S. Das, J.S. Handler et al., IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov. 6(3): 247– 55 (2016). https://doi.org/10.1158/2159-8290.Cd-15-0843.
R. Cabrita, M. Lauss, A. Sanna et al., Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 577(7791), 561–565 (2020). https://doi.org/10.1038/s41586-019-1914-8. (PMID: 10.1038/s41586-019-1914-831942071)
F. Petitprez, De A. Reyniès, E.Z. Keung et al., B cells are associated with survival and immunotherapy response in sarcoma. Nature. 577(7791): 556– 60 (2020). https://doi.org/10.1038/s41586-019-1906-8.
C. Cui, J. Wang, E. Fagerberg et al., Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell. 184(25), 6101–18e13 (2021). https://doi.org/10.1016/j.cell.2021.11.007. (PMID: 10.1016/j.cell.2021.11.007348522368671355)
R.A.M. Rossetti, N.P.C. Lorenzi, K. Yokochi et al., B lymphocytes can be activated to act as antigen presenting cells to promote anti-tumor responses. PLoS One. 13(7), e0199034 (2018). https://doi.org/10.1371/journal.pone.0199034. (PMID: 10.1371/journal.pone.0199034299757086033398)
S. Hong, Z. Zhang, H. Liu et al., B cells are the Dominant Antigen-presenting cells that activate naive CD4(+) T cells upon immunization with a Virus-Derived Nanoparticle Antigen. Immunity. 49(4), 695–708e4 (2018). https://doi.org/10.1016/j.immuni.2018.08.012. (PMID: 10.1016/j.immuni.2018.08.01230291027)
J. Deng, J.B. Fleming, Inflammation and myeloid cells in Cancer Progression and Metastasis. Front. Cell. Dev. Biol. 9, 759691 (2021). https://doi.org/10.3389/fcell.2021.759691. (PMID: 10.3389/fcell.2021.75969135127700)
R. Trovato, A. Fiore, S. Sartori et al., Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J. Immunother Cancer. 7(1), 255 (2019). https://doi.org/10.1186/s40425-019-0734-6. (PMID: 10.1186/s40425-019-0734-6315338316751612)
J.Q. Fan, M.F. Wang, H.L. Chen et al., Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol. Cancer. 19(1), 32 (2020). https://doi.org/10.1186/s12943-020-01151-3. (PMID: 10.1186/s12943-020-01151-3320612577023714)
I.M. Stromnes, J.S. Brockenbrough, K. Izeradjene et al., Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut. 63(11), 1769–1781 (2014). https://doi.org/10.1136/gutjnl-2013-306271. (PMID: 10.1136/gutjnl-2013-30627124555999)
C. Siret, A. Collignon, F. Silvy et al., Deciphering the Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells in pancreatic ductal adenocarcinoma. Front. Immunol. 10, 3070 (2019). https://doi.org/10.3389/fimmu.2019.03070. (PMID: 10.3389/fimmu.2019.0307032038621)
C.W. Steele, S.A. Karim, J.D.G. Leach et al., CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 29(6), 832–845 (2016). https://doi.org/10.1016/j.ccell.2016.04.014. (PMID: 10.1016/j.ccell.2016.04.014272655044912354)
Y. Zhang, A. Velez-Delgado, E. Mathew et al., Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 66(1), 124–136 (2017). https://doi.org/10.1136/gutjnl-2016-312078. (PMID: 10.1136/gutjnl-2016-31207827402485)
A. Thyagarajan, M.S.A. Alshehri, K.L.R. Miller et al., Myeloid-derived suppressor cells and pancreatic Cancer: implications in Novel Therapeutic approaches. Cancers (Basel). 11(11) (2019). https://doi.org/10.3390/cancers11111627.
Y. Zhu, J.M. Herndon, D.K. Sojka et al., Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity. 47(2): 323– 38.e6 (2017). https://doi.org/10.1016/j.immuni.2017.07.014.
T. Lazarov, S. Juarez-Carreño, N. Cox et al., Physiology and diseases of tissue-resident macrophages. Nature. 618(7966), 698–707 (2023). https://doi.org/10.1038/s41586-023-06002-x. (PMID: 10.1038/s41586-023-06002-x3734464610649266)
Y. Zhu, B.L. Knolhoff, M.A. Meyer et al., CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74(18), 5057–5069 (2014). https://doi.org/10.1158/0008-5472.Can-13-3723. (PMID: 10.1158/0008-5472.Can-13-3723250828154182950)
A. Mantovani, P. Allavena, F. Marchesi et al., Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21(11), 799–820 (2022). https://doi.org/10.1038/s41573-022-00520-5. (PMID: 10.1038/s41573-022-00520-5359740969380983)
A.R. Poh, M. Ernst, Tumor-Associated macrophages in Pancreatic Ductal Adenocarcinoma: Therapeutic opportunities and Clinical challenges. Cancers (Basel). 13(12) (2021). https://doi.org/10.3390/cancers13122860.
S. Chen, A. Saeed, Q. Liu et al., Macrophages in immunoregulation and therapeutics. Signal. Transduct. Target. Ther. 8(1), 207 (2023). https://doi.org/10.1038/s41392-023-01452-1. (PMID: 10.1038/s41392-023-01452-13721155910200802)
N. Caronni, LA F. Terza, F.M. Vittoria et al., IL-1β(+) macrophages fuel pathogenic inflammation in pancreatic cancer. Nature, 2023, 623(7986): 415– 22. https://doi.org/10.1038/s41586-023-06685-2.
D.S. Foster, M. Januszyk, D. Delitto et al., 1392– 406.e7. Cancer Cell. 40(11) (2022). https://doi.org/10.1016/j.ccell.2022.09.015 . Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin.
W. Lin, P. Noel, E.H. Borazanci et al., Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 12(1), 80 (2020). https://doi.org/10.1186/s13073-020-00776-9. (PMID: 10.1186/s13073-020-00776-9329884017523332)
K. Oh, Y.J. Yoo, L.A. Torre-Healy et al., Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype. Nat. Commun. 14(1), 5226 (2023). https://doi.org/10.1038/s41467-023-40895-6. (PMID: 10.1038/s41467-023-40895-63763392410460409)
C. Feig, J.O. Jones, M. Kraman et al., Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. U S A 110(50), 20212–20217 (2013). https://doi.org/10.1073/pnas.1320318110. (PMID: 10.1073/pnas.1320318110242778343864274)
E. Sahai, I. Astsaturov, E. Cukierman et al., A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20(3): 174– 86 (2020). https://doi.org/10.1038/s41568-019-0238-1.
G. Biffi, D.A. Tuveson, Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev, 2021, 101(1): 147– 76. https://doi.org/10.1152/physrev.00048.2019.
A.N. Hosein, R.A. Brekken, A. Maitra, Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17(8), 487–505 (2020). https://doi.org/10.1038/s41575-020-0300-1. (PMID: 10.1038/s41575-020-0300-1323937718284850)
D. Öhlund, A. Handly-Santana, G. Biffi et al., Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214(3), 579–596 (2017). https://doi.org/10.1084/jem.20162024. (PMID: 10.1084/jem.20162024282324715339682)
T. Zhang, Y. Ren, P. Yang et al., Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell. Death Dis. 13(10), 897 (2022). https://doi.org/10.1038/s41419-022-05351-1. (PMID: 10.1038/s41419-022-05351-1362840879596464)
K. Yoshikawa, M. Ishida, H. Yanai et al., Prognostic significance of PD-L1-positive cancer-associated fibroblasts in patients with triple-negative breast cancer. BMC Cancer. 21(1), 239 (2021). https://doi.org/10.1186/s12885-021-07970-x. (PMID: 10.1186/s12885-021-07970-x336764257937297)
C. Iwamoto, K. Ohuchida, T. Shinkawa et al., Bone marrow-derived macrophages converted into cancer-associated fibroblast-like cells promote pancreatic cancer progression. Cancer Lett. 512, 15–27 (2021). https://doi.org/10.1016/j.canlet.2021.04.013. (PMID: 10.1016/j.canlet.2021.04.01333961925)
H. Liu, Y. Shi, F. Qian, Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Adv. Drug Deliv Rev. 172, 37–51 (2021). https://doi.org/10.1016/j.addr.2021.02.012. (PMID: 10.1016/j.addr.2021.02.01233705881)
I. Stouten, Van N. Montfoort, L. Hawinkels, The Tango between Cancer-Associated fibroblasts (CAFs) and Immune cells in affecting Immunotherapy Efficacy in Pancreatic Cancer. Int. J. Mol. Sci. 24(10) (2023). https://doi.org/10.3390/ijms24108707.
C. Tian, K.R. Clauser, D. Öhlund et al., Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl. Acad. Sci. U S A 116(39), 19609–19618 (2019). https://doi.org/10.1073/pnas.1908626116. (PMID: 10.1073/pnas.1908626116314847746765243)
Y. Chen, J. Kim, S. Yang et al., Type I collagen deletion in αSMA(+) myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell, 2021, 39(4): 548– 65.e6. https://doi.org/10.1016/j.ccell.2021.02.007.
F. Kai, A.P. Drain, V.M. Weaver, The Extracellular Matrix modulates the metastatic journey. Dev. Cell. 49(3), 332–346 (2019). https://doi.org/10.1016/j.devcel.2019.03.026. (PMID: 10.1016/j.devcel.2019.03.026310637536527347)
C.S. Moreno, SOX4: the unappreciated oncogene. Semin Cancer Biol. 67(Pt 1), 57–64 (2020). https://doi.org/10.1016/j.semcancer.2019.08.027. (PMID: 10.1016/j.semcancer.2019.08.02731445218)
A. Bagati, S. Kumar, P. Jiang et al., Integrin αvβ6-TGFβ-SOX4 pathway drives Immune Evasion in Triple-negative breast Cancer. Cancer Cell. 39(1), 54–67e9 (2021). https://doi.org/10.1016/j.ccell.2020.12.001. (PMID: 10.1016/j.ccell.2020.12.00133385331)
M. Perez-Penco, S.E. Weis-Banke, A. SCHINA et al., TGFβ-derived immune modulatory vaccine: targeting the immunosuppressive and fibrotic tumor microenvironment in a murine model of pancreatic cancer. J. Immunother Cancer. 10(12) (2022). https://doi.org/10.1136/jitc-2022-005491.
J. Chen, Z.Y. Ding, S. LI et al., Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics. 11(3), 1345–1363 (2021). https://doi.org/10.7150/thno.51383. (PMID: 10.7150/thno.51383333915387738904)
A. Naik, A. Leask, Tumor-associated fibrosis impairs the response to immunotherapy. Matrix Biol. 119, 125–140 (2023). https://doi.org/10.1016/j.matbio.2023.04.002. (PMID: 10.1016/j.matbio.2023.04.00237080324)
C.J. Whatcott, C.H. Diep, P. Jiang et al., Desmoplasia in primary tumors and metastatic lesions of pancreatic Cancer. Clin. Cancer Res. 21(15), 3561–3568 (2015). https://doi.org/10.1158/1078-0432.Ccr-14-1051. (PMID: 10.1158/1078-0432.Ccr-14-1051256956924526394)
N.M. Aiello, D.L. Bajor, R.J. Norgard et al., Metastatic progression is associated with dynamic changes in the local microenvironment. Nat. Commun. 7, 12819 (2016). https://doi.org/10.1038/ncomms12819. (PMID: 10.1038/ncomms12819276284235027614)
V.R. Placencio-Hickok, M. Lauzon, N. Moshayedi et al., Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: Primary tumors compared to sites of metastasis. Pancreatology. 22(1): 92– 7 (2022). https://doi.org/10.1016/j.pan.2021.09.015.
Van E. Cutsem, M.A. Tempero, D. Sigal et al., Randomized Phase III Trial of Pegvorhyaluronidase Alfa with Nab-Paclitaxel Plus Gemcitabine for patients with Hyaluronan-High Metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38(27), 3185–3194 (2020). https://doi.org/10.1200/jco.20.00590. (PMID: 10.1200/jco.20.00590327066357499614)
J.D. Martin, G. Seano, R.K. Jain, Normalizing function of Tumor vessels: Progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019). https://doi.org/10.1146/annurev-physiol-020518-114700. (PMID: 10.1146/annurev-physiol-020518-114700307427826571025)
Van Der J.A. Zee, Van C.H. Eijck, W.C. Hop et al., Angiogenesis: a prognostic determinant in pancreatic cancer?. Eur. J. Cancer. 47(17), 2576–2584 (2011). https://doi.org/10.1016/j.ejca.2011.08.016. (PMID: 10.1016/j.ejca.2011.08.01621958461)
J. Tao, G. Yang, W. Zhou et al., Targeting hypoxic tumor microenvironment in pancreatic cancer. J. Hematol. Oncol. 14(1), 14 (2021). https://doi.org/10.1186/s13045-020-01030-w. (PMID: 10.1186/s13045-020-01030-w334360447805044)
E. Katsuta, Q. Qi, X. Peng et al., Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci. Rep. 9(1), 1310 (2019). https://doi.org/10.1038/s41598-018-37909-5. (PMID: 10.1038/s41598-018-37909-5307186786362082)
A. Ene-Obong, A.J. Clear, J. Watt et al., Activated pancreatic stellate cells sequester CD8 + T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology. 145(5), 1121–1132 (2013). https://doi.org/10.1053/j.gastro.2013.07.025. (PMID: 10.1053/j.gastro.2013.07.02523891972)
B. Keith, R.S. Johnson, M.C. Simon, HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer. 12(1), 9–22 (2011). https://doi.org/10.1038/nrc3183. (PMID: 10.1038/nrc3183221699723401912)
C.S. Mundry, K.C. Eberle, P.K. Singh et al., Local and systemic immunosuppression in pancreatic cancer: targeting the stalwarts in tumor’s arsenal. Biochim. Biophys. Acta Rev. Cancer. 1874(1), 188387 (2020). https://doi.org/10.1016/j.bbcan.2020.188387. (PMID: 10.1016/j.bbcan.2020.188387325798897483650)
A.D. Rhim, P.E. Oberstein, D.H. Thomas et al., Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25(6), 735–747 (2014). https://doi.org/10.1016/j.ccr.2014.04.021. (PMID: 10.1016/j.ccr.2014.04.021248565854096698)
E.B. Rankin, A.J. Giaccia, The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15(4): 678– 85 (2008). https://doi.org/10.1038/cdd.2008.21.
S. Schwörer, F.V. Cimino, M. Ros et al., Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic Cancer cell-derived cytokines. Cancer Res. 83(10), 1596–1610 (2023). https://doi.org/10.1158/0008-5472.Can-22-2316. (PMID: 10.1158/0008-5472.Can-22-23163691261810658995)
C.J. Garcia Garcia, Y. Huang, N.R. Fuentes et al., Stromal HIF2 regulates Immune suppression in the pancreatic Cancer microenvironment. Gastroenterology. 162(7), 2018–2031 (2022). https://doi.org/10.1053/j.gastro.2022.02.024. (PMID: 10.1053/j.gastro.2022.02.02435216965)
L. Ye, K. Jin, Z. Liao et al., Hypoxia-reprogrammed regulatory group 2 innate lymphoid cells promote immunosuppression in pancreatic cancer. EBioMedicine. 79, 104016 (2022). https://doi.org/10.1016/j.ebiom.2022.104016. (PMID: 10.1016/j.ebiom.2022.104016354832739117270)
V.P. Balachandran, G.L. Beatty, S.K. Dougan, Broadening the impact of Immunotherapy to Pancreatic Cancer: challenges and opportunities. Gastroenterology. 156(7), 2056–2072 (2019). https://doi.org/10.1053/j.gastro.2018.12.038. (PMID: 10.1053/j.gastro.2018.12.03830660727)
A.S. Bear, R.H. Vonderheide, M.H. O’hara, Challenges and opportunities for Pancreatic Cancer immunotherapy. Cancer Cell. 38(6), 788–802 (2020). https://doi.org/10.1016/j.ccell.2020.08.004. (PMID: 10.1016/j.ccell.2020.08.004329467737738380)
L.D. Wood, M.I. Canto, E.M. Jaffee et al., Pancreatic Cancer: Pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 163(2), 386–402e1 (2022). https://doi.org/10.1053/j.gastro.2022.03.056. (PMID: 10.1053/j.gastro.2022.03.05635398344)
H.W. Jackson, J.R. Fischer, V.R.T. Zanotelli et al., The single-cell pathology landscape of breast cancer. Nature, 2020, 578(7796): 615– 20. https://doi.org/10.1038/s41586-019-1876-x.
C. Hutton, F. Heider, A. Blanco-Gomez et al., Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 39(9), 1227–44e20 (2021). https://doi.org/10.1016/j.ccell.2021.06.017. (PMID: 10.1016/j.ccell.2021.06.017342979178443274)
R. Moncada, D. Barkley, F. Wagner et al., Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38(3), 333–342 (2020). https://doi.org/10.1038/s41587-019-0392-8. (PMID: 10.1038/s41587-019-0392-831932730)
J. Leinwand, G. Miller, Regulation and modulation of antitumor immunity in pancreatic cancer. Nat. Immunol. 21(10), 1152–1159 (2020). https://doi.org/10.1038/s41590-020-0761-y. (PMID: 10.1038/s41590-020-0761-y32807942)
Y.D. Seo, X. Jiang, K.M. Sullivan et al., Mobilization of CD8(+) T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic Cancer. Clin. Cancer Res. 25(13), 3934–3945 (2019). https://doi.org/10.1158/1078-0432.Ccr-19-0081. (PMID: 10.1158/1078-0432.Ccr-19-0081309406576606359)
C.M. Schürch, S.S. Bhate, G.L. Barlow et al., Coordinated Cellular neighborhoods Orchestrate Antitumoral immunity at the Colorectal Cancer Invasive Front. Cell. 182(5), 1341–59e19 (2020). https://doi.org/10.1016/j.cell.2020.07.005. (PMID: 10.1016/j.cell.2020.07.005327631547479520)
M.C. Dieu-Nosjean, N.A. Giraldo, H. Kaplon et al., Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol. Rev. 271(1), 260–275 (2016). https://doi.org/10.1111/imr.12405. (PMID: 10.1111/imr.1240527088920)
C. Sautès-Fridman, M. Lawand, N.A. Giraldo et al., Tertiary lymphoid structures in cancers: Prognostic Value, Regulation, and manipulation for therapeutic intervention. Front. Immunol. 7, 407 (2016). https://doi.org/10.3389/fimmu.2016.00407. (PMID: 10.3389/fimmu.2016.00407277522585046074)
A.B. Rodriguez, V.H. Engelhard, Insights into Tumor-Associated Tertiary lymphoid structures: novel targets for Antitumor Immunity and Cancer Immunotherapy. Cancer Immunol. Res. 8(11), 1338–1345 (2020). https://doi.org/10.1158/2326-6066.Cir-20-0432. (PMID: 10.1158/2326-6066.Cir-20-0432331393007643396)
C. Sautès-Fridman, F. Petitprez, J. Calderaro et al., Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer. 19(6), 307–325 (2019). https://doi.org/10.1038/s41568-019-0144-6. (PMID: 10.1038/s41568-019-0144-631092904)
C. Gu-Trantien, S. Loi, S. Garaud et al., CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123(7), 2873–2892 (2013). https://doi.org/10.1172/jci67428. (PMID: 10.1172/jci67428237781403696556)
D.R. Kroeger, K. Milne, B.H. Nelson, Tumor-infiltrating plasma cells are Associated with Tertiary lymphoid structures, cytolytic T-Cell responses, and Superior Prognosis in Ovarian Cancer. Clin. Cancer Res. 22(12), 3005–3015 (2016). https://doi.org/10.1158/1078-0432.Ccr-15-2762. (PMID: 10.1158/1078-0432.Ccr-15-276226763251)
A. Hennequin, V. Derangère, R. Boidot et al., Tumor infiltration by tbet + effector T cells and CD20 + B cells is associated with survival in gastric cancer patients. Oncoimmunology. 5(2), e1054598 (2016). https://doi.org/10.1080/2162402x.2015.1054598. (PMID: 10.1080/2162402x.2015.105459827057426)
J. Goc, C. Germain, T.K. Vo-Bourgais et al., Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8 + T cells. Cancer Res. 74(3), 705–715 (2014). https://doi.org/10.1158/0008-5472.Can-13-1342. (PMID: 10.1158/0008-5472.Can-13-134224366885)
F. Bergomas, F. Grizzi, A. Doni et al., Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers (Basel). 4(1), 1–10 (2011). https://doi.org/10.3390/cancers4010001. (PMID: 10.3390/cancers401000124213222)
Di G. Caro, F. Bergomas, F. Grizzi et al., Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin. Cancer Res. 20(8), 2147–2158 (2014). https://doi.org/10.1158/1078-0432.Ccr-13-2590. (PMID: 10.1158/1078-0432.Ccr-13-259024523438)
T.P. Mcmullen, R. Lai, L. Dabbagh et al., Survival in rectal cancer is predicted by T cell infiltration of tumour-associated lymphoid nodules. Clin Exp Immunol. 161(1): 81– 8 (2010). https://doi.org/10.1111/j.1365-2249.2010.04147.x.
M. Baratin, L. Simon, A. Jorquera et al., T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node. Immunity. 47(2): 349– 62.e5 (2017). https://doi.org/10.1016/j.immuni.2017.07.019.
F. BARONE, D.H. Gardner, S. Nayar et al., Stromal fibroblasts in Tertiary lymphoid structures: a Novel Target in Chronic inflammation. Front. Immunol. 7, 477 (2016). https://doi.org/10.3389/fimmu.2016.00477. (PMID: 10.3389/fimmu.2016.00477278771735100680)
A.J. Aguirre, J.A. Nowak, N.D. Camarda et al., Real-time genomic characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discov. 8(9), 1096–1111 (2018). https://doi.org/10.1158/2159-8290.Cd-18-0275. (PMID: 10.1158/2159-8290.Cd-18-0275299038806192263)
A.J. Mcguigan, H.G. Coleman, R.S. Mccain et al., Immune cell infiltrates as prognostic biomarkers in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. J. Pathol. Clin. Res. 7(2), 99–112 (2021). https://doi.org/10.1002/cjp2.192. (PMID: 10.1002/cjp2.192334813397869931)
V.P. Balachandran, M. Łuksza, J.N. Zhao et al., Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 551(7681), 512–516 (2017). https://doi.org/10.1038/nature24462. (PMID: 10.1038/nature24462291321466145146)
K.T. Byrne, C.B. Betts, R. Mick et al., Neoadjuvant Selicrelumab, an agonist CD40 antibody, induces changes in the Tumor Microenvironment in patients with resectable pancreatic Cancer. Clin. Cancer Res. 27(16), 4574–4586 (2021). https://doi.org/10.1158/1078-0432.Ccr-21-1047. (PMID: 10.1158/1078-0432.Ccr-21-1047341127098667686)
K.E. Blise, S. Sivagnanam, C.B. Betts et al., Machine learning links T-cell function and spatial localization to Neoadjuvant Immunotherapy and Clinical Outcome in Pancreatic Cancer. Cancer Immunol. Res. 12(5), 544–558 (2024). https://doi.org/10.1158/2326-6066.Cir-23-0873. (PMID: 10.1158/2326-6066.Cir-23-087338381401)
R.D. Gartrell, T. Enzler, P.S. Kim et al., Neoadjuvant chemoradiation alters the immune microenvironment in pancreatic ductal adenocarcinoma. Oncoimmunology. 11(1), 2066767 (2022). https://doi.org/10.1080/2162402x.2022.2066767. (PMID: 10.1080/2162402x.2022.2066767355581609090285)
E. Karamitopoulou, A.S. Wenning, A. Acharjee et al., Spatially restricted tumour-associated and host-associated immune drivers correlate with the recurrence sites of pancreatic cancer. Gut. 72(8), 1523–1533 (2023). https://doi.org/10.1136/gutjnl-2022-329371. (PMID: 10.1136/gutjnl-2022-32937136792355)
فهرسة مساهمة: Keywords: Pancreatic ductal adenocarcinoma; Spatial perspective; Tumor microenvironment
تواريخ الأحداث: Date Created: 20240715 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1007/s13402-024-00970-6
PMID: 39008192
قاعدة البيانات: MEDLINE
الوصف
تدمد:2211-3436
DOI:10.1007/s13402-024-00970-6